208. 实现 Trie (前缀树)-字典树

248 篇文章 2 订阅
232 篇文章 0 订阅
这篇博客介绍了如何利用字典树(Trie)数据结构进行字符串的插入、搜索和前缀检查操作。通过创建一个Trie类,实现了插入方法将字符串逐字符插入树中,搜索方法查找字符串是否存在,以及startsWith方法判断字符串是否是已插入字符串的前缀。示例展示了插入和查询过程,验证了该实现的正确性。
摘要由CSDN通过智能技术生成

一、题目描述

Trie(发音类似 “try”)或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补完和拼写检查。

请你实现 Trie 类:

  • Trie() 初始化前缀树对象。
  • void insert(String word) 向前缀树中插入字符串 word 。
  • boolean search(String word) 如果字符串 word 在前缀树中,返回 true(即,在检索之前已经插入);否则,返回 false 。
  • boolean startsWith(String prefix) 如果之前已经插入的字符串 word 的前缀之一为 prefix ,返回 true ;否则,返回 false 。
示例 1:
输入
["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
[[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
输出
[null, null, true, false, true, null, true]

解释
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple");   // 返回 True
trie.search("app");     // 返回 False
trie.startsWith("app"); // 返回 True
trie.insert("app");
trie.search("app");     // 返回 True

二、解题

字典树
class Trie {
    Node root;
    public Trie() {
        root = new Node();
    }
    
    public void insert(String word) {
        //插入
        Node cur = root;
        for(int i = 0;i<word.length();i++){
            //遍历每一个字符
            int ch = word.charAt(i) - 'a';
            //如果没有出现的话就新建一个节点保存。
            if(cur.son[ch] == null){
                cur.son[ch] = new Node();
            }
            cur = cur.son[ch];
        }
        //这个字符插入完毕,然后标志位true;
        cur.is_end = true;
    }
    
    public boolean search(String word) {
        //查找
        Node cur = root;
        for(int i = 0;i<word.length();i++){
            int ch = word.charAt(i) - 'a';
            if(cur.son[ch] == null){
                return false;
            }
            cur = cur.son[ch];
        }
        return cur.is_end;
    }
    
    public boolean startsWith(String prefix) {
        Node cur = root;
        for(int i = 0;i<prefix.length();i++){
            int ch = prefix.charAt(i) - 'a';
            if(cur.son[ch] == null){
                return false;
            }
            cur = cur.son[ch];
        }
        return true;
    }
    
    //字典树--构造节点 节点的内容分为是否为字符串的尾字符,子节点为26叉树
    class Node{
        boolean is_end;
        Node[] son = new Node[26];
        Node(){
            is_end = false;
            //初始化
            for(int i = 0;i<26;i++){
                son[i] = null;
            }
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值