一、题目描述
Trie(发音类似 “try”)或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补完和拼写检查。
请你实现 Trie 类:
- Trie() 初始化前缀树对象。
- void insert(String word) 向前缀树中插入字符串 word 。
- boolean search(String word) 如果字符串 word 在前缀树中,返回 true(即,在检索之前已经插入);否则,返回 false 。
- boolean startsWith(String prefix) 如果之前已经插入的字符串 word 的前缀之一为 prefix ,返回 true ;否则,返回 false 。
示例 1:
输入
["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
[[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
输出
[null, null, true, false, true, null, true]
解释
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple"); // 返回 True
trie.search("app"); // 返回 False
trie.startsWith("app"); // 返回 True
trie.insert("app");
trie.search("app"); // 返回 True
二、解题
字典树
class Trie {
Node root;
public Trie() {
root = new Node();
}
public void insert(String word) {
//插入
Node cur = root;
for(int i = 0;i<word.length();i++){
//遍历每一个字符
int ch = word.charAt(i) - 'a';
//如果没有出现的话就新建一个节点保存。
if(cur.son[ch] == null){
cur.son[ch] = new Node();
}
cur = cur.son[ch];
}
//这个字符插入完毕,然后标志位true;
cur.is_end = true;
}
public boolean search(String word) {
//查找
Node cur = root;
for(int i = 0;i<word.length();i++){
int ch = word.charAt(i) - 'a';
if(cur.son[ch] == null){
return false;
}
cur = cur.son[ch];
}
return cur.is_end;
}
public boolean startsWith(String prefix) {
Node cur = root;
for(int i = 0;i<prefix.length();i++){
int ch = prefix.charAt(i) - 'a';
if(cur.son[ch] == null){
return false;
}
cur = cur.son[ch];
}
return true;
}
//字典树--构造节点 节点的内容分为是否为字符串的尾字符,子节点为26叉树
class Node{
boolean is_end;
Node[] son = new Node[26];
Node(){
is_end = false;
//初始化
for(int i = 0;i<26;i++){
son[i] = null;
}
}
}
}