hdu 6053

TrickGCD

Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 1218    Accepted Submission(s): 464


Problem Description
You are given an array  A  , and Zhu wants to know there are how many different array  B  satisfy the following conditions?

1BiAi
* For each pair( l , r ) ( 1lrn ) ,  gcd(bl,bl+1...br)2
 

Input
The first line is an integer T( 1T10 ) describe the number of test cases.

Each test case begins with an integer number n describe the size of array  A .

Then a line contains  n  numbers describe each element of  A

You can assume that  1n,Ai105
 

Output
For the  k th test case , first output "Case #k: " , then output an integer as answer in a single line . because the answer may be large , so you are only need to output answer  mod   109+7
 

Sample Input
  
  
1 4 4 4 4 4
 

Sample Output
  
  
Case #1: 17
 

Source
 

—————————————————————————————————

题意:给你n个数字,每个位置的数字可以小于等于a[i],求所有gcd(l,r)都满足大于等于2的情况数

解题思路:枚举gcd的情况,每种gcd的情况等于所有a[i]/gcd的乘积,但这显然会超,所以需要优化,我们可以分块处理,如枚举5时,5 6 7 8 9对应的都是1个,所以我们可以按gcd分块,而且越大块越少,快内用快速幂加速。 得到一个dp数组dp[i]表示gcd为i的方案数,最后容斥搞一搞


  1. #include <iostream>  
  2. #include <cstdio>  
  3. #include <algorithm>  
  4. #include <cmath>  
  5. #include <cstring>  
  6. #include <string>  
  7. #include <queue>  
  8. #include <stack>  
  9. #include <set>  
  10. #include <map>  
  11. using namespace std;  
  12. #define LL long long  
  13. const LL mod=1e9+7;  
  14. const int INF=0x3f3f3f3f;  
  15. #define MAXN 100005  
  16.   
  17. int pre[MAXN];  
  18. LL a[MAXN];  
  19. LL dp[MAXN];  
  20.   
  21. LL qpow(LL a,LL b)  
  22. {  
  23.     LL ans=1;  
  24.     while(b)  
  25.     {  
  26.         if(b&1) ans=(ans*a)%mod;  
  27.         b>>=1,a=(a*a)%mod;  
  28.     }  
  29.     return ans;  
  30. }  
  31.   
  32. int main()  
  33. {  
  34.     int T,n;  
  35.     int q=1;  
  36.     for(scanf("%d",&T); T--;)  
  37.     {  
  38.         scanf("%d",&n);  
  39.         memset(pre,0,sizeof pre);  
  40.         for(int i=0; i<n; i++)  
  41.         {  
  42.             scanf("%lld",&a[i]);  
  43.             pre[a[i]]++;  
  44.         }  
  45.         for(int i=1; i<MAXN; i++) pre[i]+=pre[i-1];  
  46.         for(int i=2; i<MAXN; i++)  
  47.         {  
  48.             dp[i]=1LL;  
  49.             for(int j=0; j<MAXN; j+=i)  
  50.             {  
  51.                 int cnt;  
  52.                 if (j == 0) cnt = pre[j + i - 1];  
  53.                 else if (j + i - 1 > 100000) cnt = pre[100001] - pre[j - 1];  
  54.                 else  cnt=pre[j+i-1]-pre[j-1];  
  55.   
  56.                 if(j/i==0&&cnt) {dp[i]=0;break;}  
  57.                 dp[i]=(dp[i]*qpow(j/i,(LL)cnt))%mod;  
  58.             }  
  59.         }  
  60.         LL ans=0;  
  61.         for(int i=a[n-1]; i>1; i--)  
  62.         {  
  63.             for(int j=i+i; j<=a[n-1]; j+=i)  
  64.             {  
  65.                 dp[i]-=dp[j];  
  66.                 dp[i]=(dp[i]%mod+mod)%mod;  
  67.             }  
  68.             ans+=dp[i];  
  69.             ans%=mod;  
  70.         }  
  71.         printf("Case #%d: %lld\n",q++,ans);  
  72.   
  73.     }  
  74.   
  75.     return 0;  
  76. }  
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <string>
#include <queue>
#include <stack>
#include <set>
#include <map>
using namespace std;
#define LL long long
const LL mod=1e9+7;
const int INF=0x3f3f3f3f;
#define MAXN 100005

int pre[MAXN];
LL a[MAXN];
LL dp[MAXN];

LL qpow(LL a,LL b)
{
    LL ans=1;
    while(b)
    {
        if(b&1) ans=(ans*a)%mod;
        b>>=1,a=(a*a)%mod;
    }
    return ans;
}

int main()
{
    int T,n;
    int q=1;
    for(scanf("%d",&T); T--;)
    {
        scanf("%d",&n);
        memset(pre,0,sizeof pre);
        for(int i=0; i<n; i++)
        {
            scanf("%lld",&a[i]);
            pre[a[i]]++;
        }
        for(int i=1; i<MAXN; i++) pre[i]+=pre[i-1];
        for(int i=2; i<MAXN; i++)
        {
            dp[i]=1LL;
            for(int j=0; j<MAXN; j+=i)
            {
                int cnt;
                if (j == 0) cnt = pre[j + i - 1];
                else if (j + i - 1 > 100000) cnt = pre[100001] - pre[j - 1];
                else  cnt=pre[j+i-1]-pre[j-1];

                if(j/i==0&&cnt) {dp[i]=0;break;}
                dp[i]=(dp[i]*qpow(j/i,(LL)cnt))%mod;
            }
        }
        LL ans=0;
        for(int i=a[n-1]; i>1; i--)
        {
            for(int j=i+i; j<=a[n-1]; j+=i)
            {
                dp[i]-=dp[j];
                dp[i]=(dp[i]%mod+mod)%mod;
            }
            ans+=dp[i];
            ans%=mod;
        }
        printf("Case #%d: %lld\n",q++,ans);

    }

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值