题意:给出序列a,a[i]<=1e5,长度为n,问有多少种序列b 其中序列b满足
1<=b[i]<=a[i], b中任意一个[l,r] gcd(b[l],b[l+1]..b[r])>=2
设dp[x]:gcd为x的个数 则b中每个元素都为x的倍数
b[i]<=a[i] 则第i个位置有a[i]/d种选择 直接累乘TLE.
若a[i]/d=k贡献为k,则和它相同贡献有cnt[kd,(k+1)d-1]个,则按段来枚举,算出该段贡献k^cnt.
1<=b[i]<=a[i], b中任意一个[l,r] gcd(b[l],b[l+1]..b[r])>=2
设dp[x]:gcd为x的个数 则b中每个元素都为x的倍数
b[i]<=a[i] 则第i个位置有a[i]/d种选择 直接累乘TLE.
若a[i]/d=k贡献为k,则和它相同贡献有cnt[kd,(k+1)d-1]个,则按段来枚举,算出该段贡献k^cnt.
最后容斥减掉gcd为jx的部分(j>1).O(nlog^2n)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+20;
const ll mod=1e9+7;
ll dp[N],n,a[N],cnt[N];
ll powmod(ll x,ll n)
{
ll s=1;
while(n)
{
if(n&1)
s=(s*x)%mod;
n>>=1;
x=(x*x)%mod;
}
return s%mod;
}
int main()
{
int T;
cin>>T;
int cas=0;
while(T--)
{
scanf("%d",&n);
memset(cnt,0,sizeof(cnt));
memset(dp,0,sizeof(dp));
ll mx=0;
for(int i=1;i<=n;i++)
{
scanf("%lld",&a[i]),mx=max(mx,a[i]);
cnt[a[i]]++;
}
for(int i=1;i<=mx;i++)
cnt[i]+=cnt[i-1];
ll ans=0;
for(int i=mx;i>=2;i--)
{
ll res=1;
if(cnt[i-1])
{
dp[i]=0;
continue;
}
for(int j=i;j<=mx;j+=i)
{
ll num=cnt[min(mx,(ll)j+i-1)]-cnt[j-1];//[ki~(k+1)i)
ll x=j/i;
if(num)
res=(res*powmod(x,num))%mod;
}
dp[i]=res;
}
for(int i=mx;i>=2;i--)
{
for(int j=i+i;j<=mx;j+=i)
dp[i]=(dp[i]-dp[j]+mod)%mod;
ans=(ans+dp[i])%mod;
}
printf("Case #%d: %lld\n",++cas,ans);
}
return 0;
}