HDU 6053 TrickGCD DP(筛法)

题意:给出序列a,a[i]<=1e5,长度为n,问有多少种序列b 其中序列b满足
1<=b[i]<=a[i], b中任意一个[l,r] gcd(b[l],b[l+1]..b[r])>=2

设dp[x]:gcd为x的个数 则b中每个元素都为x的倍数 
b[i]<=a[i] 则第i个位置有a[i]/d种选择 直接累乘TLE.
若a[i]/d=k贡献为k,则和它相同贡献有cnt[kd,(k+1)d-1]个,则按段来枚举,算出该段贡献k^cnt.

最后容斥减掉gcd为jx的部分(j>1).O(nlog^2n)

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+20;
const ll mod=1e9+7;
ll dp[N],n,a[N],cnt[N];
ll powmod(ll x,ll n)
{
	ll s=1;
	while(n)
	{
		if(n&1)
			s=(s*x)%mod;
		n>>=1;
		x=(x*x)%mod;
	}
	return s%mod;
}
int main() 
{
	int T;
	cin>>T;
	int cas=0;
	while(T--)
	{
		scanf("%d",&n);
		memset(cnt,0,sizeof(cnt));
		memset(dp,0,sizeof(dp));
		ll mx=0;
		for(int i=1;i<=n;i++)
		{
			scanf("%lld",&a[i]),mx=max(mx,a[i]);
			cnt[a[i]]++;
		}
		for(int i=1;i<=mx;i++)
			cnt[i]+=cnt[i-1];
		ll ans=0;
		for(int i=mx;i>=2;i--)
		{
			ll res=1;
			if(cnt[i-1])
			{
				dp[i]=0;
				continue;
			}
			for(int j=i;j<=mx;j+=i)
			{
				ll num=cnt[min(mx,(ll)j+i-1)]-cnt[j-1];//[ki~(k+1)i)
				ll x=j/i;
				if(num) 
					res=(res*powmod(x,num))%mod;
			}
			dp[i]=res;
		}
		for(int i=mx;i>=2;i--)
		{
			for(int j=i+i;j<=mx;j+=i)
				dp[i]=(dp[i]-dp[j]+mod)%mod;
			ans=(ans+dp[i])%mod;
		}
		printf("Case #%d: %lld\n",++cas,ans);
	}	
    return 0;
}


 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值