Astar2016-Round1 Problem A(前缀积+乘法逆元+快速幂取余)

FROM:
2016"百度之星" - 资格赛(Astar Round1)
http://bestcoder.hdu.edu.cn/contests/contest_showproblem.php?cid=690&pid=1001

Problem Description
度熊手上有一本字典存储了大量的单词,有一次,他把所有单词组成了一个很长很长的字符串。现在麻烦来了,他忘记了原来的字符串都是什么,神奇的是他竟然记得原来那些字符串的哈希值。一个字符串的哈希值,由以下公式计算得到:(公式略,为连乘求模) 请帮助度熊计算大字符串中任意一段的哈希值是多少。

Input
多组测试数据,每组测试数据第一行是一个正整数NN,代表询问的次数,第二行一个字符串,代表题目中的大字符串,接下来NN行,每行包含两个正整数aa和bb,代表询问的起始位置以及终止位置。
1≤N≤1,000
1≤len(string)≤100,000
1≤a,b≤len(string)

Output
对于每一个询问,输出一个整数值,代表大字符串从 aa 位到 bb 位的子串的哈希值。

Sample Input
Copy
2
ACMlove2015
1 11
8 10
1
testMessage
1 1
Sample Output
6891
9240
88

分析
我AC这题的代码采用的是线段树,但看到别人用的方法更好,这边介绍别人方法。

首先是前缀积

H[0] = 1; 
for(int i = 1 ;i<=len;i++)
{
    H[i]=H[i-1]*(Hstr[i-1]-28)%mods;
}
然后是 逆元

为何可以用逆元 http://blog.csdn.net/cqlf__/article/details/7953039 摘取博客部分:

比如:  (8/2)%5  我们求a*b*c*d*e*f*g..../z 前面乘积部分LL存不下所以要一边mod一边乘。最后处理到除z时,不一定能除尽。比如前面那个例子,8%5=3,3除不尽2就乘以2%5的逆元在%5
2%5的逆元=2^(5-2)=8 这是计算逆元的一种方法,后面讲。还有一直哦你方法是扩展欧几里德算法也是后面详细讲。
(3*8)%5=4=4%5
===============
在计算(a/b)%Mod时,往往需要先计算b%Mod的逆元p(b有逆元的条件是gcd(b,Mod)==1,显然素数肯定有逆元),然后由(a*p)%Mod得结果c。这里b的逆元p满足(b*p)%Mod=1。先来简单证明一下:
(a/b)%Mod=c;    (b*p)%Mod=1;    ==》   (a/b)*(b*p) %Mod=c;    ==》    (a*p)%Mod=c;
从上面可以看出结论的正确性,当然这里b需要是a的因子。接下来就需要知道根据b和Mod,我们怎么计算逆元p了。扩展欧几里德算法,大家应该都知道,就是已知a、b,求一组解(x,y)使得a*x+b*y=1。这里求得的x即为a%b的逆元,y为b%a的逆元(想想为什么?把方程两边都模上b或a看看)。调用ExtGcd(b,Mod,x,y),x即为b%Mod的逆元p。
求b%Mod的逆元p还有另外一种方法,即p=b^(Mod-2)%Mod,因为b^(Mod-1)%Mod=1(这里需要Mod为素数)。

逆元详解 http://blog.csdn.net/acdreamers/article/details/8220787 

重点(1/a)(mod m)=a^(m-2)。注意要像本题中这样使用逆元,要满足素数条件

对于a*b*c/(x*y*z),等于(a*x的逆元)*(b*y的逆元)*(c*z的逆元),求大数组合的时候可以利用这点。

最后是快速幂取模,不要求素数条件

原理为:

a为底,b为幂

可以把b按二进制展开为:b = p(n)*2^n  +  p(n-1)*2^(n-1)  +…+   p(1)*2  +  p(0)
其中p(i) (0<=i<=n)为 0 或 1
这样 a^b =  a^ (p(n)*2^n  +  p(n-1)*2^(n-1)  +...+  p(1)*2  +  p(0))
         =  a^(p(n)*2^n)  *  a^(p(n-1)*2^(n-1))  *...*  a^(p(1)*2)*a^p(0)

LL mod_pow(LL x,LL n,LL mod) { // x是底数,n是幂数,mod是取余数
	LL res = 1;
	x%=mod;
	while(n>0){ 
		if(n & 1){
			res = res * x % mod;
		}
		x = x * x % mod;
		n>>=1;
	} 
	return res;
}

《剑指offer》p93 面试题11数值的整数次方也介绍了快速幂方法,代码为递归形式

另一种求逆元方法:http://www.w2bc.com/article/137005

inv[1] = 1;
for (int i = 2; i<MAXN; i++)
    inv[i] = inv[MOD%i]*(MOD-MOD/i)%MOD;

代码

#include <cstdio> 
#include <cstring> 
#include <algorithm> 
#include <iostream>
using namespace std; 
const int MAXN = 1e5 + 5; 
int H[MAXN];  
char Hstr[MAXN]; 
int N,l,r; 
const int mods = 9973; 
typedef long long LL; 

//快速幂取余 
LL mod_pow(LL x,LL n,LL mod) {
	LL res = 1;
	//x%=mod;
	while(n>0){ 
		if(n & 1){
			res = res * x % mod;
		}
		x = x * x % mod;
		n>>=1;
	} 
	return res;
}

int main ()
{
	freopen("in.txt","r",stdin);
	while(scanf("%d",&N)!=EOF){  
		scanf("%s",Hstr);  
		int len =strlen(Hstr);
		H[0] = 1;  
		for(int i = 1 ;i<=len;i++){
			H[i]=H[i-1]*(Hstr[i-1]-28)%mods;
		} 
		while(N--){  
			scanf("%d%d",&l,&r);
			printf("%I64d\n",(LL)H[r]*mod_pow(H[l-1],mods-2,mods)%mods);
		}
	}
}




  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值