综述
hermito
这个作者很懒,什么都没留下…
展开
-
行人检测资源
综述文献行人检测资源(上)综述文献 行人检测具有极其广泛的应用:智能辅助驾驶,智能监控,行人分析以及智能机器人等领域。从2005年以来行人检测进入了一个快速的发展阶段,但是也存在很多问题还有待解决,主要还是在性能和速度方面还不能达到一个权衡。近年,以谷歌为首的自动驾驶技术的研发正如火如荼的进行,这也迫切需要能对行人进行快速有效的检测,以保证自动驾驶转载 2016-04-14 18:09:03 · 17039 阅读 · 1 评论 -
推荐系统
第 1 部分: 推荐引擎初探https://www.ibm.com/developerworks/cn/web/1103_zhaoct_recommstudy1/第 2 部分: 深入推荐引擎相关算法 - 协同过滤http://www.ibm.com/developerworks/cn/web/1103_zhaoct_recommstudy2/第 3 部分原创 2015-01-19 08:48:16 · 566 阅读 · 0 评论 -
迁移学习(Transfer Learning)
FROM: http://www.zhizhihu.com/html/y2009/790.html在机器学习领域,迁移学习(Transfer learning)是一个比较新的名词。目前国内做这个方面的很少,我目前只知道香港科技大学杨强教授及上海交大的机器学习小组在从事这方面的研究,近几年他们已经取得大量的成果,发表了十几篇AI领域顶级的会议论文,着实让我崇拜不已。接下来的研究生活,偶希望能转载 2015-01-18 09:52:25 · 990 阅读 · 0 评论 -
距离度量的表示法
1. 欧氏距离,最常见的两点之间或多点之间的距离表示法,又称之为欧几里得度量,它定义于欧几里得空间中,如点 x = (x1,...,xn) 和 y = (y1,...,yn) 之间的距离为:(1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离:(2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间转载 2014-11-10 22:27:27 · 11199 阅读 · 0 评论 -
METRIC LEARNING(度量学习)
度量学习也可以认为是相似度。knn最合适的是学习马氏距离,怎么学?要给出先验知识,哪两个数据更相似,欧式距离不可靠。SVM也是metric learning的一种,因为kernel matrix就是相似度。state of art的metric learning方法LMNN,有代码可以下载。也未必效果最好,用得很多,因为有代码。度量就是相似度,任何方法只要用到相似度,就可以用到度量学习。度量学转载 2015-01-27 14:23:32 · 2569 阅读 · 0 评论