大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
本文主要介绍了猪只盘点方案总结,希望能对同学们有所帮助。
文章目录
1. 方案一
1.1 算法方案解析
1.1.1 数据噪声
-
针对训练集20多个图片当中存在的标注不准确,然后做了修正。
-
复赛的测试集也是存在很多的不确定标注,有的图中目标并没有标出来,与我们实际标注存在差异,因此,验证模型存在很大难度和不确定性。
-
有歧义的标注与可能的漏标。
1.1.2 数据预处理
- .图片所对应的标签文件有两种不同的格式:统一进行了处理并生成labelme形式的json文件,通过labelme对数据集进行了校对。
- 人工标注:对主办方提供的测试集进行了人工标注,生成模型训练所用验证集,用以提供参考,可准确了解模型训