经典相关性分析

一、概念

        它的基本思想是仿照主成分分析法中把多变量与多变量之间的相关化为两个变量之间相关的做法,首先在每组变量内部找出具有最大相关性的一对线性组合,然后再在每组变量内找出第二对线性组合,使其本身具有最大的相关性,并分别与第一对线性组合不相关。如此下去,直到两组变量内各变量之间的相关性被提取完毕为止。有了这些最大相关的线性组合,则讨论两组变量之间的相关,就转化为研究这些线性组合的最大相关,从而减少了研究变量的个数。

二、步骤

 

 

         第三步,典型相关系数\lambda i的显著性检验。

         第四步,典型结构与典型冗余分析。

三、例题

%典型相关分析
clc,clear
x=readmatrix('F:\数学建模\数学建模算法与应用(第3版)源程序\程序及数据\10第10章  多元分析\anli10_6.xlsx')
y=readmatrix('F:\数学建模\数学建模算法与应用(第3版)源程序\程序及数据\10第10章  多元分析\anli10_6.xlsx','Sheet',2)
p=size(x,2); %x城市基础设施指标个数
q=size(y,2); %y指标个数
x=zscore(x);
y=zscore(y);
n=size(x,1);
%下面做典型相关分析,a1,b1返回的是典型变量的系数,r返回的是典型相关系数
%u1,v1返回的是典型变量的值,stats返回的是假设检验的一些统计量的值
[a1,b1,r,u1,v1,stats]=canoncorr(x,y)
%下面修正a1,b1每一列的正负号,使得a,b每一列的系数和为正
%对应的,典型变量取值的正负号也要修正
a=a1.*repmat(sign(sum(a1)),size(a1,1),1) 
b=b1.*repmat(sign(sum(b1)),size(b1,1),1)
u=u1.*repmat(sign(sum(a1)),size(u1,1),1)
v=v1.*repmat(sign(sum(b1)),size(v1,1),1)
x_u_r=x'*u/(n-1)   %计算x,u的相关系数
y_v_r=y'*v/(n-1)   %计算y,v的相关系数
x_v_r=x'*v/(n-1)   %计算x,v的相关系数
y_u_r=y'*u/(n-1)   %计算y,u的相关系数
ux=sum(x_u_r.^2)/p   %x组原始变量被u_i解释的方差比例
ux_cum=cumsum(ux)    %x组原始变量被u_i解释的方差累积比例
vx=sum(x_v_r.^2)/p   %x组原始变量被v_i解释的方差比例
vx_cum=cumsum(vx)    %x组原始变量被v_i解释的方差累积比例
vy=sum(y_v_r.^2)/q   %y组原始变量被v_i解释的方差比例
vy_cum=cumsum(vy)    %y组原始变量被v_i解释的方差累积比例
uy=sum(y_u_r.^2)/q   %y组原始变量被u_i解释的方差比例
uy_cum=cumsum(uy)    %y组原始变量被u_i解释的方差累积比例
val=r.^2             %典型相关系数的平方,M1或M2矩阵的非零特征值

 

由表10.34可知,前两个典型相关系数均较高,表明相应典型变量之间密切相关。但要确定典型变量相关性的显著程度,尚需进行相关系数的\chi ^{2}统计量检验,具体做法是:比较统计量\chi ^{2}计算值与临界值的大小,据比较结果判定典型变量相关性的显著程度,其结果如表10.35所示。

 df1: [24 15 8 3]

 chisq: [74.9775 40.8284 9.2942 2.0579]
 pChisq: [3.7608e-07 3.3963e-04 0.3181 0.5605] 

 

 从表10.35看这4对典型变量均通过了\chi ^{2}统计量检验,表明相应典型变量之间相关关系显著,能够用城市基础设施变量组来解释城市竞争力变量组。

        鉴于原始变量的计量单位不同,不宜直接比较,本文采用标准化的典型系数,给出典型相关模型。

 

 

 

 

 

结论:

1)市场占有率是决定城市竞争力水平的首要指标,每百人电话数、设施指数和技术设施指数是影响城市竞争力的主要基础设施变量。

2)城市居民人均收入是反映城市竞争力的另外一个重要变量。

3)劳动生产率在我国城市竞争力中的作用尚不明显。 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值