Visual Studio 2022新建 cmake 工程测试 opencv helloworld

1. 参考博客:

        1.1. https://blog.csdn.net/yangSHU21/article/details/130237669( 利用OpenCV把一幅彩色图像转换成灰度图 )( vs2022_cmake_test.cpp 中的代码用的此博客的,就改了下图片文件路径而已 )

2. 检查 Visual Studio 2022是否支持 cmake:

        打开 Visual Studio installer:

已安装--》修改:

 工作负荷--》使用C++的桌面开发--》可选--》如果 "用于 windows的 C++ cmake工具" 勾选了,即表示你的 Visual Studio 2022 支持 cmake:

3. 操作步骤:

        打开 Visual Studio 2022 --》创建新项目--》搜索 cmake--》选择 "cmake 项目( 生成不依赖于 .sln 或 .vcxproj 文件的新式跨平台 C++ 应用。 )"--》点击下一步--》 设置项目名称、位置--》点击创建,默认生成的 vs2022_cmake_test_02.cpp 文件内容如下:

#include "vs2022_cmake_test_02.h"
using namespace std;

int main()
{
	cout << "Hello CMake." << endl;
	return 0;
}

默认生成的 CMakeLists.txt内容如下:        

cmake_minimum_required (VERSION 3.8)

# 如果支持,请为 MSVC 编译器启用热重载。
if (POLICY CMP0141)
  cmake_policy(SET CMP0141 NEW)
  set(CMAKE_MSVC_DEBUG_INFORMATION_FORMAT "$<IF:$<AND:$<C_COMPILER_ID:MSVC>,$<CXX_COMPILER_ID:MSVC>>,$<$<CONFIG:Debug,RelWithDebInfo>:EditAndContinue>,$<$<CONFIG:Debug,RelWithDebInfo>:ProgramDatabase>>")
endif()

project ("vs2022_cmake_test_02")

# 将源代码添加到此项目的可执行文件。
add_executable (vs2022_cmake_test_02 "vs2022_cmake_test_02.cpp" "vs2022_cmake_test_02.h")

if (CMAKE_VERSION VERSION_GREATER 3.12)
  set_property(TARGET vs2022_cmake_test_02 PROPERTY CXX_STANDARD 20)
endif()

将 vs2022_cmake_test.cpp 的内容修改为如下所示:

#include "vs2022_cmake_test_02.h"
#include <opencv2\opencv.hpp>

using namespace cv;
using namespace std;

void opencv_test();
void ConvertRGB2GRAY(const Mat& image, Mat& imageGray);

void opencv_test() {
	Mat src = imread("D:/素材/图片/壁纸/0001.jpg");
	Mat src0 = imread("D:/素材/图片/壁纸/0001.jpg", 0);
	Mat grayImage;
	Mat cvt_gray_image;

	//读入的彩色图
	namedWindow("origin_image", WINDOW_NORMAL);
	imshow("origin_image", src);

	//opencv使用imread函数读入彩色图,设置第二个参数为0得到的灰度图
	namedWindow("opencv_image", WINDOW_NORMAL);
	imshow("opencv_image", src0);

	//使用公式GRAY=0.299*R+0.587*G+0.114*B
	ConvertRGB2GRAY(src, grayImage);
	namedWindow("my_gray_image", WINDOW_NORMAL);
	imshow("my_gray_image", grayImage);

	//先读入彩色图,然后使用cvtColor函数进行灰度转化
	cvtColor(src, cvt_gray_image, COLOR_BGR2GRAY);
	namedWindow("cvt_gray_image", WINDOW_NORMAL);
	imshow("cvt_gray_image", cvt_gray_image);
	waitKey(0);
}

void ConvertRGB2GRAY(const Mat& image, Mat& imageGray)
{
	if (!image.data || image.channels() != 3)
	{
		return;
	}
	//创建一张单通道的灰度图像
	imageGray = Mat::zeros(image.size(), CV_8UC1);
	//取出存储图像像素的数组的指针
	uchar* pointImage = image.data;
	uchar* pointImageGray = imageGray.data;
	//取出图像每行所占的字节数
	size_t stepImage = image.step;
	size_t stepImageGray = imageGray.step;


	for (int i = 0; i < imageGray.rows; i++)
	{
		for (int j = 0; j < imageGray.cols; j++)
		{
			//opencv的通道顺序是BGR,而不是我们常说的RGB顺序
			pointImageGray[i * stepImageGray + j] =
				(uchar)(0.114 * pointImage[i * stepImage + 3 * j] +
					0.587 * pointImage[i * stepImage + 3 * j + 1] +
					0.299 * pointImage[i * stepImage + 3 * j + 2]);
		}
	}
}



int main()
{
	cout << "Hello CMake." << endl;
	opencv_test();
	return 0;
}

此时 vs2022 报错 "找不到opencv 的头文件":

 找到 opencv2 的位置如下所示:

可以直接将 "D:\install\opencv\opencv\build\include" 加入进来,即在 CMakeLists.txt 中加入 如下指令:

include_directories( "D:/install/opencv/opencv/build/include" ) 

但是这样不太优雅,优雅的做法是加入如下指令:

 find_package(OpenCV REQUIRED) 

其作用是查找 OpenCV 包,找到以后就可以直接使用内置变量 OpenCV_INCLUDE_DIRS 和 OpenCV_LIBS 了( 分别表示 opencv 的 头文件的目录位置和 链接库的目录位置 ),但是 cmake 是从哪里去找 opencv 呢?可能它内置的有一些策略吧,不放心的话或者电脑装了多个版本的 opencv,其实可以手动指定查找位置,即使用如下指令:

set(OpenCV_DIR "D:/install/opencv/opencv/build")

这里指定 "D:/install/opencv/opencv/build" 的依据是什么呢?到底是 opencv 的根目录还是头文件目录还是链接库目录呢?其实应该写 opencv 编译目录中 

OpenCVConfig.cmake

文件所在的目录,例如我电脑中 OpenCVConfig.cmake  所在位置如下所示:

所以我指定的是  D:/install/opencv/opencv/build( ps:windows中 CMakeLists.txt 中的路径最好写正斜线,不能写反斜线!!!不知道双反斜线可不可以?没试过 )

修改后的最终完整的 CMakeLists.txt 如下所示:

cmake_minimum_required (VERSION 3.8)

# 如果支持,请为 MSVC 编译器启用热重载。
if (POLICY CMP0141)
  cmake_policy(SET CMP0141 NEW)
  set(CMAKE_MSVC_DEBUG_INFORMATION_FORMAT "$<IF:$<AND:$<C_COMPILER_ID:MSVC>,$<CXX_COMPILER_ID:MSVC>>,$<$<CONFIG:Debug,RelWithDebInfo>:EditAndContinue>,$<$<CONFIG:Debug,RelWithDebInfo>:ProgramDatabase>>")
endif()

project ("vs2022_cmake_test_02")

set(OpenCV_DIR "D:/install/opencv/opencv/build")
# 查找OpenCV包
find_package(OpenCV REQUIRED)

# include_directories( "D:/install/opencv/opencv/build/include" )
# set(CMAKE_LIBRARY_PATH "D:/install/opencv/opencv/build/x64/vc16/bin"  "D:/install/opencv/opencv/build/x64/vc16/lib" )

# 如果OpenCV被找到,包含其头文件目录和库
message( "--------------------------------------------------" )
message( "--------------------------------------------------" )
message( "--------------------------------------------------" )
message( "OpenCV_INCLUDE_DIRS = ${OpenCV_INCLUDE_DIRS}"  )
message( "OpenCV_LIBS = ${OpenCV_LIBS}" )
message( "OpenCV_FOUND = ${OpenCV_FOUND}" )

if(OpenCV_FOUND)
  message( "OpenCV founded" )
  include_directories(${OpenCV_INCLUDE_DIRS})
endif()


# 将源代码添加到此项目的可执行文件。
add_executable (vs2022_cmake_test_02 "vs2022_cmake_test_02.cpp" "vs2022_cmake_test_02.h")

if(OpenCV_FOUND)
  message( "OpenCV founded" )
  target_link_libraries(vs2022_cmake_test_02 ${OpenCV_LIBS})
endif()

message( "------------------------------------------------" )
message( "-----------------------------------------------" )
message( "--------------------------------------------------" )

if (CMAKE_VERSION VERSION_GREATER 3.12)
  set_property(TARGET vs2022_cmake_test_02 PROPERTY CXX_STANDARD 20)
endif()

这时候编译就成功了,部分输出信息如下:

1> 工作目录: D:/code/c_code/cpp_study_demo/vs2022/vs2022_cmake_test_02/out/build/x64-debug
1> [CMake] -- OpenCV ARCH: x64
1> [CMake] -- OpenCV RUNTIME: vc16
1> [CMake] -- OpenCV STATIC: OFF
1> [CMake] -- Found OpenCV 4.10.0 in D:/install/opencv/opencv/build/x64/vc16/lib
1> [CMake] -- You might need to add D:\install\opencv\opencv\build\x64\vc16\bin to your PATH to be able to run your applications.
1> [CMake] --------------------------------------------------
1> [CMake] --------------------------------------------------
1> [CMake] --------------------------------------------------
1> [CMake] OpenCV_INCLUDE_DIRS = D:/install/opencv/opencv/build/include
1> [CMake] OpenCV_LIBS = opencv_calib3d;opencv_core;opencv_dnn;opencv_features2d;opencv_flann;opencv_gapi;opencv_highgui;opencv_imgcodecs;opencv_imgproc;opencv_ml;opencv_objdetect;opencv_photo;opencv_stitching;opencv_video;opencv_videoio;opencv_world
1> [CMake] OpenCV_FOUND = 1
1> [CMake] OpenCV founded
1> [CMake] OpenCV founded
1> [CMake] ------------------------------------------------
1> [CMake] -----------------------------------------------
1> [CMake] --------------------------------------------------
1> [CMake] -- Configuring done (0.0s)
1> [CMake] -- Generating done (0.0s)
1> [CMake] -- Build files have been written to: D:/code/c_code/cpp_study_demo/vs2022/vs2022_cmake_test_02/out/build/x64-debug
1> 已提取 CMake 变量。
1> 已提取源文件和标头。
1> 已提取代码模型。
1> 已提取工具链配置。
1> 已提取包含路径。
1> CMake 生成完毕。

可以看到 :

OpenCV_INCLUDE_DIRS = D:/install/opencv/opencv/build/include
OpenCV_LIBS = opencv_calib3d;opencv_core;opencv_dnn;opencv_features2d;opencv_flann;opencv_gapi;opencv_highgui;opencv_imgcodecs;opencv_imgproc;opencv_ml;opencv_objdetect;opencv_photo;opencv_stitching;opencv_video;opencv_videoio;opencv_world

格式化一下:

OpenCV_INCLUDE_DIRS = D:/install/opencv/opencv/build/include
OpenCV_LIBS = opencv_calib3d;
              opencv_core;
              opencv_dnn;
              opencv_features2d;
              opencv_flann;
              opencv_gapi;
              opencv_highgui;
              opencv_imgcodecs;
              opencv_imgproc;
              opencv_ml;
              opencv_objdetect;
              opencv_photo;
              opencv_stitching;
              opencv_video;
              opencv_videoio;
              opencv_world

 

这时候运行 vs2022_cmake_test_02.exe报错:

使用 Everything 搜索下 opencv_world4100.dll:

应该把 D:\install\opencv\opencv\build\x64\vc16\bin 加入环境变量,其实刚才 cmake 的输入信息中已经建议这样做了:

1> [CMake] -- Found OpenCV 4.10.0 in D:/install/opencv/opencv/build/x64/vc16/lib
1> [CMake] -- You might need to add D:\install\opencv\opencv\build\x64\vc16\bin to your PATH to be able to run your applications.
1> [CMake] --------------------------------------------------
1> [CMake] --------------------------------------------

加入环境变量:

 这时候就运行成功了:

 记得打开新的 cmd 测试,如果是在 vs2022中测试也需要关闭工程重新打开进行测试。

4. CMakeLists.txt 中直接使用的变量 OpenCV_INCLUDE_DIRS、OpenCV_LIBS、OpenCV_FOUND 是在哪里定义的?

打开 D:\install\opencv\opencv\build 下面的 OpenCVConfig.cmake,找到如下内容:

#    This file will define the following variables:
#      - OpenCV_LIBS                     : The list of libraries to link against.
#      - OpenCV_INCLUDE_DIRS             : The OpenCV include directories.
#      - OpenCV_COMPUTE_CAPABILITIES     : The version of compute capability
#      - OpenCV_VERSION                  : The version of this OpenCV build: "4.10.0"
#      - OpenCV_VERSION_MAJOR            : Major version part of OpenCV_VERSION: "4"
#      - OpenCV_VERSION_MINOR            : Minor version part of OpenCV_VERSION: "10"
#      - OpenCV_VERSION_PATCH            : Patch version part of OpenCV_VERSION: "0"
#      - OpenCV_VERSION_STATUS           : Development status of this build: ""

说此文件定义了这几个变量,但是这只是注释,此文件并没有直接有声明比如 set( OpenCV_INCLUDE_DIRS ... )  的地方,可能是 该文件引用的其他文件声明了,在该文件中找到了如下内容:


function(check_one_config RES)
  set(${RES} "" PARENT_SCOPE)
  if(NOT OpenCV_RUNTIME OR NOT OpenCV_ARCH)
    return()
  endif()
  set(candidates)
  if(OpenCV_STATIC)
    list(APPEND candidates "${OpenCV_ARCH}/${OpenCV_RUNTIME}/staticlib")
  endif()
  if(OpenCV_CUDA)
    list(APPEND candidates "gpu/${OpenCV_ARCH}/${OpenCV_RUNTIME}/lib")
  endif()
  if(OpenCV_CUDA AND OpenCV_STATIC)
    list(APPEND candidates "gpu/${OpenCV_ARCH}/${OpenCV_RUNTIME}/staticlib")
  endif()
  list(APPEND candidates "${OpenCV_ARCH}/${OpenCV_RUNTIME}/lib")
  foreach(c ${candidates})
    set(p "${OpenCV_CONFIG_PATH}/${c}")
    if(EXISTS "${p}/OpenCVConfig.cmake")
      set(${RES} "${p}" PARENT_SCOPE)
      return()
    endif()
  endforeach()
endfunction()

定义了一个集合变量 candidates,如下一行:

 list(APPEND candidates "${OpenCV_ARCH}/${OpenCV_RUNTIME}/lib")

应该是往集合 candidates 中追加一个路径类型的元素,其中路径中的 OpenCV_ARCH 应该对应我电脑环境的 x64,OpenCV_RUNTIME 应该对应 vc16,果然在 D:\install\opencv\opencv\build\x64\vc16\lib 下面找到了 OpenCVConfig.cmake:

打开此文件,发现了定了定义变量 OpenCV_INCLUDE_DIRS 的地方:

一. DataX3.0 概览  DataX 是一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL、Oracle 等)、HDFS、Hive、ODPS、HBase、FTP 等各种异构数据源之间稳定高效的数据同步功能。  设计理念  为了解决异构数据源同步问题,DataX 将复杂的网状的同步链路变成了星型数据链路,DataX 作为中间传输载体负责连接各种数据源。当需要接入一个新的数据源的时候,只需要将此数据源对接到 DataX,便能跟已有的数据源做到无缝数据同步。  当前使用现状  DataX 在阿里巴巴集团内被广泛使用,承担了所有大数据的离线同步业务,并已持续稳定运行了 6 年之久。目前每天完成同步 8w 多道作业,每日传输数据量超过 300TB。  此前已经开源 DataX1.0 版本,此次介绍为阿里巴巴开源全新版本 DataX3.0,有了更多更强大的功能和更好的使用体验。Github 主页地址:https://github.com/alibaba/DataX。  二、DataX3.0 框架设计  DataX 本身作为离线数据同步框架,采用 Framework plugin 架构构建。将数据源读取和写入抽象成为 Reader/Writer 插件,纳入到整个同步框架中。  Reader:Reader 为数据采集模块,负责采集数据源的数据,将数据发送给 Framework。  Writer: Writer 为数据写入模块,负责不断向 Framework 取数据,并将数据写入到目的端。  Framework:Framework 用于连接 reader 和 writer,作为两者的数据传输通道,并处理缓冲,流控,并发,数据转换等核心技术问题。  三. DataX3.0 插件体系  经过几年积累,DataX 目前已经有了比较全面的插件体系,主流的 RDBMS 数据库、NOSQL、大数据计算系统都已经接入。DataX 目前支持数据如下:  DataX Framework 提供了简单的接口与插件交互,提供简单的插件接入机制,只需要任意加上一种插件,就能无缝对接其他数据源。详情请看:DataX 数据源指南  四、DataX3.0 核心架构  DataX 3.0 开源版本支持单机多线程模式完成同步作业运行,本小节按一个 DataX 作业生命周期的时序图,从整体架构设计非常简要说明 DataX 各个模块相互关系。  核心模块介绍:  DataX 完成单个数据同步的作业,我们称之为 Job,DataX 接受到一个 Job 之后,将启动一个进程来完成整个作业同步过程。DataX Job 模块是单个作业的中枢管理节点,承担了数据清理、子任务切分(将单一作业计算转化为多个子 Task)、TaskGroup 管理等功能。  DataXJob 启动后,会根据不同的源端切分策略,将 Job 切分成多个小的 Task (子任务),以便于并发执行。Task 便是 DataX 作业的最小单元,每一个 Task 都会负责一部分数据的同步工作。  切分多个 Task 之后,DataX Job 会调用 Scheduler 模块,根据配置的并发数据量,将拆分成的 Task 重新组合,组装成 TaskGroup (任务组)。每一个 TaskGroup 负责以一定的并发运行完毕分配好的所有 Task,默认单个任务组的并发数量为5。  每一个 Task 都由 TaskGroup 负责启动,Task 启动后,会固定启动 Reader>Channel>Writer 的线程来完成任务。 标签:数据同步
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值