POJ2253最短路

給出n个点的坐标,问点1到点2的所有路径中,两点最大距离的最小值是多少。 其实这种最小化最大值的题,用二分+dj应该没问题,但是其实还有更简单的方法,只需要改变松弛操作即可。

最短路经典松弛操作:

if (dis[v] > dis[u] + w)
    dis[v] = dis[u] + w;

我们从本质出发,为什么这样更新呢?因为我们求最短路时最后想要的是最小的总dis。回到这题,我们最后想要的每条路径上所有小段的dis中的最小值。那么只需改变松弛操作为:

if (dis[v] > max(dis[u] , w))
    dis[v] = max(dis[u] , w);

另外,这题n=200的数据范围,可以用Floyd写,更简单。
Dijkstra代码

/*
 * @Author: hesorchen
 * @Date: 2020-04-14 10:33:26
 * @LastEditTime: 2020-05-06 09:33:04
 * @Link: https://hesorchen.github.io/
 */

#include <map>
#include <set>
#include <list>
#include <queue>
#include <deque>
#include <cmath>
#include <stack>
#include <vector>
#include <cstdio>
#include <string>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define endl '\n'
#define PI cos(-1)
#define PB push_back
#define ll long long
#define INF 0x3f3f3f3f
#define mod 1000000009
#define lowbit(abcd) (abcd & (-abcd))
#define fre                              \
    {                                    \
        freopen("in.txt", "r", stdin);   \
        freopen("out.txt", "w", stdout); \
    }

struct node
{
    double w;
    int v, next;
} edge[40010];
int head[210];
double dis[210];
int vis[210];
struct node2
{
    double x, y;
} p[210];
struct node3
{
    int u;
    double w;
    bool operator<(node3 const b) const
    {
        return w > b.w;
    }
};

priority_queue<node3> q;
int ct = 1;
void add(int u, int v, double w)
{
    edge[ct].v = v;
    edge[ct].w = w;
    edge[ct].next = head[u];
    head[u] = ct++;
}
inline double distant(node2 a, node2 b)
{
    return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
void dj()
{

    fill(dis, dis + 210, 1000000000);
    fill(vis, vis + 210, 0);
    dis[1] = 0;
    q.push(node3{1, 0});
    while (!q.empty())
    {
        int u = q.top().u;
        q.pop();
        for (int i = head[u]; i; i = edge[i].next)
        {
            int v = edge[i].v;
            if (dis[v] > max(dis[u], edge[i].w))
            {
                dis[v] = max(dis[u], edge[i].w);
                q.push(node3{v, dis[v]});
            }
        }
    }
}

int main()
{
    // fre;
    int n;
    int cas = 1;
    while (cin >> n)
    {
        if (!n)
            break;
        ct = 1;
        fill(head, head + 210, 0);
        for (int i = 1; i <= n; i++)
            cin >> p[i].x >> p[i].y;
        for (int i = 1; i <= n; i++)
            for (int j = i + 1; j <= n; j++)
            {
                add(j, i, distant(p[i], p[j]));
                add(i, j, distant(p[i], p[j]));
            }
        dj();
        printf("Scenario #%d\nFrog Distance = ", cas++);
        printf("%.3f\n\n", dis[2]);
    }
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hesorchen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值