关于Dijkstra求最长路

前言

今天下午训练赛有一题求最短路 和最长路的题,由于基础不够扎实,天真地以为改一下松弛操作、重载一下优先队列即可。事实上,经典Dijkstra并不能求最长路。

经典Dijkstra不能求最长路原理

在经典Dijkstra中,根据贪心思想,我们每次使用一个距离源点最短的点A来松弛其他点,并且保证了这个操作每个点只会进行一次,也即每个点有且仅有一次作为点A(除了距离最远的点,因为最后一点被松弛完整个算法就结束了)。

众所周知,迪杰斯特拉的使用条件是图中不存在负边。这是因为在不存在负边权的图中,最短路有子结构,子路径最短能保证总路径最短。根据这一性质,也有了一个结论,上面提到的用来松弛其他点的那个点A,距离源点的距离已经是最短的(这也是Dijsktra每个点只用来松弛一次的前提)。然而,以下两种情况不存在子结构:

  • 存在负边权,例如

在这里插入图片描述

  • 求最长路,例如

请添加图片描述

在不存在子结构的图中,一个点用来松弛其他点的点,未必已经是最优解。所以,我们可以使用允许多次松弛的算法(SPFA、经典Dijsktra改成允许一个点松弛其他点多次,事实上就应该称为SPFA了)来求最长路。

总结
  1. 正权边图中求最长路可使用SPFA
  2. 经典Dijsktra可在全负权边图中跑最长路、全正权边图中跑最短路
  3. Dijsktra+堆优化的时间复杂度为 O ( E l o g V ) O(ElogV) O(ElogV)、SPFA(Bellman Ford)+堆优化的时间复杂度是 O ( V E ) O(VE) O(VE)
Dijkstra算法是一种用于解最短路径的算法,而不是最长路。如果要最长路,需要使用其他算法,如Acyclic Longest Path算法或Bellman-Ford算法。这里以Acyclic Longest Path算法为例进行介绍。 Acyclic Longest Path算法是一种用于有向无环图(DAG)中最长路的动态规划算法。它的基本思想是对DAG的所有节点进行拓扑排序,并按照拓扑序列的顺序依次计算每个节点的最长路。具体地,假设有一个有向无环图DAG=(V,E),其中V表示节点集合,E表示边集合。对DAG进行拓扑排序,得到节点的拓扑序列。对于拓扑序列中的每个节点v,计算其前驱节点的最长路,然后将最长路加上v到其前驱节点的边权值,得到v的最长路。重复上述过程直到计算完所有节点的最长路。 下面是一个使用Acyclic Longest Path算法解DAG中最长路的C++代码实现: ```c++ #include <iostream> #include <vector> #include <queue> using namespace std; const int INF = 0x3f3f3f3f; int main() { int n, m; cin >> n >> m; vector<vector<pair<int, int>>> graph(n); // 邻接表表示图 vector<int> in_degree(n, 0); // 记录每个节点的入度 vector<int> dist(n, -INF); // 记录每个节点的最长路 for (int i = 0; i < m; i++) { int u, v, w; cin >> u >> v >> w; graph[u].push_back({v, w}); // 添加边 in_degree[v]++; // 统计入度 } queue<int> q; // 拓扑排序所需队列 // 将入度为0的节点加入队列 for (int i = 0; i < n; i++) { if (in_degree[i] == 0) { q.push(i); dist[i] = 0; // 初始距离为0 } } while (!q.empty()) { int u = q.front(); q.pop(); for (auto p : graph[u]) { int v = p.first, w = p.second; dist[v] = max(dist[v], dist[u] + w); // 更新最长路 if (--in_degree[v] == 0) q.push(v); // 将入度为0的节点加入队列 } } for (int i = 0; i < n; i++) { cout << "Node " << i << " longest path: " << dist[i] << endl; } return 0; } ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hesorchen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值