论文-《Visual Question Answering A tutorial》笔记

本文详细介绍了视觉问答(VQA)的研究背景、答案类型、与图像标题的区别,以及常用数据集。VQA处理过程包括图像和问题编码、特征联合、输出预测等步骤。文中还探讨了注意力机制、预训练语言表示、记忆增广神经网络等高级技术,以及数据集偏差和生词处理问题。最后,总结了VQA领域的发展现状和未来研究方向。
摘要由CSDN通过智能技术生成

重点翻译拓展

论文下载

主题:

本文主要介绍了该领域正在进行的工作以及基于深度学习的VQA如今的方法。

 

正文

1.研究VQA的原因:

(1)计算机视觉方面,需要根据算法从图像中提取高水平的数据并进行推理分析,VQA作为最初图灵测试或者图像字幕的替代任务出现。

(2)VQA如果发展成熟,可以独立应用于生活。

 

2.VQA答案形式:

(1)开放式回答,包含了较为复杂句式,并且机器生成的答案和正确答案可能会有同义替换释义之类的问题。

(2)多选项式回答,提供了一组候选答案,相比开放式回答要容易,并且验证也更加容易。

 

3.VQA与Image captioning 区别:

   两个方向都是跨计算机视觉和自然语言处理领域的方向,但是还是有以下区别

(1)Image captioning更多的要求描述性能,这几乎涉及纯粹的视觉信息,答案不固定,是一种开放式回答。

(2)VQA除了要求对图像和文本信息的提取,然后通过常识和给定图片中不存在的其它信息进行推理,答案格式不唯一。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值