主题:
本文主要介绍了该领域正在进行的工作以及基于深度学习的VQA如今的方法。
正文:
1.研究VQA的原因:
(1)计算机视觉方面,需要根据算法从图像中提取高水平的数据并进行推理分析,VQA作为最初图灵测试或者图像字幕的替代任务出现。
(2)VQA如果发展成熟,可以独立应用于生活。
2.VQA答案形式:
(1)开放式回答,包含了较为复杂句式,并且机器生成的答案和正确答案可能会有同义替换释义之类的问题。
(2)多选项式回答,提供了一组候选答案,相比开放式回答要容易,并且验证也更加容易。
3.VQA与Image captioning 区别:
两个方向都是跨计算机视觉和自然语言处理领域的方向,但是还是有以下区别
(1)Image captioning更多的要求描述性能,这几乎涉及纯粹的视觉信息,答案不固定,是一种开放式回答。
(2)VQA除了要求对图像和文本信息的提取,然后通过常识和给定图片中不存在的其它信息进行推理,答案格式不唯一。