A - 区间选点 II (附加数据)
给定一个数轴上的 n 个区间,要求在数轴上选取最少的点使得第 i 个区间 [ai, bi] 里至少有 ci 个点
使用差分约束系统的解法解决这道题
使用差分约束系统的解法解决这道题
使用差分约束系统的解法解决这道题
使用差分约束系统的解法解决这道题
使用差分约束系统的解法解决这道题
Input
输入第一行一个整数 n 表示区间的个数,接下来的 n 行,每一行两个用空格隔开的整数 a,b 表示区间的左右端点。1 <= n <= 50000, 0 <= ai <= bi <= 50000 并且 1 <= ci <= bi - ai+1。
Output
输出一个整数表示最少选取的点的个数
Sample Input
5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1
Sample Output
6
思路:
一开始没考虑到0点前端节点没有对应的数组值,改正后可以将所有值都往右移一位。
主要使用到spfa算法求最大值,因为要选取最小的点数,我们可以尽量使距离最大,直到包含整个距离,从而达到取最小个数的目的。
代码:
#include<iostream>
#include<queue>
#include<cstdlib>
#include<ctime>
using namespace std;
struct edge
{
int to,next,w;
}e[150050];
int head[50010],tot,inq[50010],n,a1,a2,a3,sum[50010],maxb=0,flag;
void add(int x,int y,int w)
{
e[++tot].to=y,e[tot].next=head[x];
e[tot].w=w,head[x]=tot;
}
void spfa()
{
queue<int> q;
for(int i=0;i<50010;i++) sum[i]=-100000,inq[i]=0;
q.push(0);
inq[0]=1;
sum[0]=0;
while(!q.empty())
{
//cout << " w" << endl;
int x=q.front();q.pop();
inq[x]=0;
for(int i=head[x];i;i=e[i].next)
{
//cout << "e" << endl;
int y=e[i].to,w=e[i].w;
if(sum[y]<sum[x]+w)
{
sum[y]=sum[x]+w;
//cout << y << " cd "<<sum[y] << endl;
if(!inq[y])
{
q.push(y);
inq[y]=1;
}
}
}
}
}
int main()
{
scanf("%d",&n);
tot=1;
while(n--)
{
scanf("%d%d%d",&a1,&a2,&a3);
/*
srand((int)time(0));
a1=rand()%50000;
a2=rand()%(50000-a1)+a1;
a3=rand()%50000;
cout << a1 <<" "<<a2 << " " <<a3 <<endl;
*/
add(a1,a2+1,a3);
maxb=max(maxb,a2);
}
//cout << maxb <<endl;
for(int i=1;i<=50000;i++)
{
add(i-1,i,0);
add(i,i-1,-1);
}
spfa();
cout << sum[maxb+1] << endl;
return 0;
}
B - 猫猫向前冲
众所周知, TT 是一位重度爱猫人士,他有一只神奇的魔法猫。
有一天,TT 在 B 站上观看猫猫的比赛。一共有 N 只猫猫,编号依次为1,2,3,…,N进行比赛。比赛结束后,Up 主会为所有的猫猫从前到后依次排名并发放爱吃的小鱼干。不幸的是,此时 TT 的电子设备遭到了宇宙射线的降智打击,一下子都连不上网了,自然也看不到最后的颁奖典礼。
不幸中的万幸,TT 的魔法猫将每场比赛的结果都记录了下来,现在他想编程序确定字典序最小的名次序列,请你帮帮他。
Input
输入有若干组,每组中的第一行为二个数N(1<=N<=500),M;其中N表示猫猫的个数,M表示接着有M行的输入数据。接下来的M行数据中,每行也有两个整数P1,P2表示即编号为 P1 的猫猫赢了编号为 P2 的猫猫。
Output
给出一个符合要求的排名。输出时猫猫的编号之间有空格,最后一名后面没有空格!
其他说明:符合条件的排名可能不是唯一的,此时要求输出时编号小的队伍在前;输入数据保证是正确的,即输入数据确保一定能有一个符合要求的排名。
Sample Input
4 3
1 2
2 3
4 3
Sample Output
1 2 4 3
思路:
一道经典的拓扑排序题,记录下每个点的入度值,将入度值为1的点的负数加入最大堆中,即可达到字典序最小的目的,同时,没取出一个点,将与这个点相连的其他点的入度减一,然后在判断是否为0,是否应该加入堆中,最终按顺序输出结果即可。
代码:
#include<iostream>
#include<queue>
#include<vector>
#include<string.h>
using namespace std;
struct edge
{
int to,next;
}e[510*510];
int n,m,in[510],head[510],tot,a1,a2;
vector<int> ans;
void add(int x,int y)
{
e[++tot].to=y,e[tot].next=head[x];
head[x]=tot;
}
priority_queue<int> q;
bool toposort()
{
for(int i=1;i<=n;i++)
{
if(in[i]==0)
q.push(-i);
}
while(!q.empty())
{
int x=q.top();q.pop();
ans.push_back(-x);
for(int i=head[-x];i;i=e[i].next)
{
int y=e[i].to;
if(--in[y]==0)
q.push(-y);
}
}
if(ans.size()==n)
{
for(int i=0;i<n;i++)
{
i==0?cout << ans[i]:cout <<" " << ans[i];
}
cout << endl;
return true;
}
return false;
}
void clear()
{
tot=0;
memset(head,0,sizeof(head));
memset(in,0,sizeof(in));
memset(e,0,sizeof(e));
ans.clear();
while(!q.empty())
q.pop();
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
clear();
while(m--)
{
scanf("%d%d",&a1,&a2);
add(a1,a2);
in[a2]++;
}
toposort();
}
}
C - 班长竞选
大学班级选班长,N 个同学均可以发表意见 若意见为 A B 则表示 A 认为 B 合适,意见具有传递性,即 A 认为 B 合适,B 认为 C 合适,则 A 也认为 C 合适 勤劳的 TT 收集了M条意见,想要知道最高票数,并给出一份候选人名单,即所有得票最多的同学,你能帮帮他吗?
Input
本题有多组数据。第一行 T 表示数据组数。每组数据开始有两个整数 N 和 M (2 <= n <= 5000, 0 <m <= 30000),接下来有 M 行包含两个整数 A 和 B(A != B) 表示 A 认为 B 合适。
Output
对于每组数据,第一行输出 “Case x: ”,x 表示数据的编号,从1开始,紧跟着是最高的票数。 接下来一行输出得票最多的同学的编号,用空格隔开,不忽略行末空格!
Sample Input
2
4 3
3 2
2 0
2 1
3 3
1 0
2 1
0 2
Sample Output
Case 1: 2
0 1
Case 2: 2
0 1 2
代码:
对于这类存在强连通分量的题目来说,我们可以先将连通分量缩成一个点,然后形成一个无环有向图,然后从一个出度为0的scc开始向前遍历,将遍历到的每个scc的值都加入最终的结果中,当然,本身的这个scc需要减一。
首先我们从0开始进行一次dfs,然后将其逆序,在进行反图的dfs,得到的每一个连通分量进行标记,然后,将每个的联通分量的入度求出来,如果为0,则将其进行dfs遍历,将其结果相加,既得最终结果。
#include<iostream>
#include<string.h>
#include<algorithm>
#include<list>
using namespace std;
list<int> e[5010];
int n,c[5010],dfn[5010],vis[5010],dcnt,scnt,p[30010],q[30010];
bool visi[5001][5001];
int m,t,a1,a2,scc[5010],sccin[5010],countt=-1;
void dfs(int x)
{
vis[x]=1;
countt+=scc[x];
//cout << x << " " ;
list<int>::iterator it;
it=e[x].begin();
while(it!=e[x].end())
{
if(!vis[*it])
dfs(*it);
++it;
}
}
void dfs1(int x)
{
vis[x]=1;
list<int>::iterator it;
it=e[x].begin();
while(it!=e[x].end())
{
if(!vis[*it])
dfs1(*it);
++it;
}
dfn[++dcnt]=x;
//cout << x << endl;
}
void dfs2(int x)
{
c[x]=scnt;
//cout << scnt<<":"<<x << endl;
list<int>::iterator it;
it=e[x].begin();
while(it!=e[x].end())
{
if(!c[*it])
dfs2(*it);
++it;
}
}
void kosaraju()
{
dcnt=scnt=0;
memset(c,0,sizeof(c));
memset(vis,0,sizeof(vis));
for(int i=0;i<n;i++)
{
//cout << "i:" << i << endl;
if(!vis[i])
dfs1(i);
}
for(int i=0;i<=n;i++)
e[i].clear();
for(int i=1;i<=m;i++)
{
//cout << q[i] << p[i] <<endl;
e[q[i]].push_back(p[i]);
}
for(int i=n;i>=1;i--)
{
if(!c[dfn[i]]) ++scnt,dfs2(dfn[i]);
}
}
void clear()
{
for(int i=0;i<=n;i++)
e[i].clear();
memset(dfn,0,sizeof(dfn));
memset(scc,0,sizeof(scc));
memset(sccin,0,sizeof(sccin));
memset(p,0,sizeof(p));
memset(q,0,sizeof(q));
memset(visi,0,sizeof(visi));
}
int main()
{
scanf("%d",&t);
for(int w=1;w<=t;w++)
{
scanf("%d%d",&n,&m);
clear();
for(int i=1;i<=m;i++)
{
scanf("%d%d",&a1,&a2);
p[i]=a1;q[i]=a2;
e[a1].push_back(a2);
}
kosaraju();
for(int i=0;i<n;i++)
{
scc[c[i]]++;
}
for(int i=0;i<=n;i++)
e[i].clear();
for(int i=1;i<=m;i++)
{
if(c[q[i]]!=c[p[i]]&&!visi[c[q[i]]][c[p[i]]])
{
e[c[q[i]]].push_back(c[p[i]]);
visi[c[q[i]]][c[p[i]]]=1;
sccin[c[p[i]]]++;
}//不在同一个连通分量。
}
int maxk=-1;
memset(p,-1,sizeof(p));
memset(q,0,sizeof(q));
for(int i=1;i<=scnt;i++)
{
if(sccin[i]==0)
{
//cout << "i:" << i << endl;
memset(vis,0,sizeof(vis));
countt=-1;
dfs(i);
p[i]=countt;
maxk=max(maxk,countt);
}
}
printf("Case %d: ",w);
cout << maxk << endl;
int g=0;
for(int i=0;i<n;i++)
{
if(p[c[i]]==maxk)
{
g==0?cout << i:cout << " " << i;
g++;
}
}
cout << endl;
}
}