week 8作业 差分约束,拓扑排序,scc缩点

A - 区间选点 II (附加数据)

给定一个数轴上的 n 个区间,要求在数轴上选取最少的点使得第 i 个区间 [ai, bi] 里至少有 ci 个点

使用差分约束系统的解法解决这道题
使用差分约束系统的解法解决这道题
使用差分约束系统的解法解决这道题
使用差分约束系统的解法解决这道题
使用差分约束系统的解法解决这道题

Input

输入第一行一个整数 n 表示区间的个数,接下来的 n 行,每一行两个用空格隔开的整数 a,b 表示区间的左右端点。1 <= n <= 50000, 0 <= ai <= bi <= 50000 并且 1 <= ci <= bi - ai+1。

Output

输出一个整数表示最少选取的点的个数

Sample Input

5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1

Sample Output

6

思路:
一开始没考虑到0点前端节点没有对应的数组值,改正后可以将所有值都往右移一位。
主要使用到spfa算法求最大值,因为要选取最小的点数,我们可以尽量使距离最大,直到包含整个距离,从而达到取最小个数的目的。

代码:

#include<iostream>
#include<queue>
#include<cstdlib>
#include<ctime>
using namespace std;
struct edge
{
	int to,next,w;
}e[150050];
int head[50010],tot,inq[50010],n,a1,a2,a3,sum[50010],maxb=0,flag;
void add(int x,int y,int w)
{
	e[++tot].to=y,e[tot].next=head[x];
	e[tot].w=w,head[x]=tot;
}
void spfa()
{
	queue<int> q;
	for(int i=0;i<50010;i++) sum[i]=-100000,inq[i]=0;
	q.push(0);
	inq[0]=1;
	sum[0]=0;
	while(!q.empty())
	{
		//cout << " w" << endl;
		int x=q.front();q.pop();
		inq[x]=0;
		for(int i=head[x];i;i=e[i].next)
		{
			//cout << "e" << endl;
			int y=e[i].to,w=e[i].w;
			if(sum[y]<sum[x]+w)
			{
				sum[y]=sum[x]+w;
				//cout << y << " cd "<<sum[y] << endl;
				if(!inq[y])
				{
					q.push(y);
					inq[y]=1;
				}
			}
		}
	}
}
int main()
{
	scanf("%d",&n);
	tot=1;
	while(n--)
	{
		scanf("%d%d%d",&a1,&a2,&a3);
		/*
		srand((int)time(0));
		a1=rand()%50000;
		a2=rand()%(50000-a1)+a1;
		a3=rand()%50000;
		cout << a1 <<" "<<a2 << " " <<a3 <<endl;
		*/
		add(a1,a2+1,a3);
		maxb=max(maxb,a2);
		
	}
	//cout << maxb <<endl;
	for(int i=1;i<=50000;i++)
	{
		add(i-1,i,0);
		add(i,i-1,-1);
	}
	spfa();
	cout << sum[maxb+1] << endl;
	return 0;
}

B - 猫猫向前冲

众所周知, TT 是一位重度爱猫人士,他有一只神奇的魔法猫。
有一天,TT 在 B 站上观看猫猫的比赛。一共有 N 只猫猫,编号依次为1,2,3,…,N进行比赛。比赛结束后,Up 主会为所有的猫猫从前到后依次排名并发放爱吃的小鱼干。不幸的是,此时 TT 的电子设备遭到了宇宙射线的降智打击,一下子都连不上网了,自然也看不到最后的颁奖典礼。
不幸中的万幸,TT 的魔法猫将每场比赛的结果都记录了下来,现在他想编程序确定字典序最小的名次序列,请你帮帮他。 

Input
输入有若干组,每组中的第一行为二个数N(1<=N<=500),M;其中N表示猫猫的个数,M表示接着有M行的输入数据。接下来的M行数据中,每行也有两个整数P1,P2表示即编号为 P1 的猫猫赢了编号为 P2 的猫猫。
Output
给出一个符合要求的排名。输出时猫猫的编号之间有空格,最后一名后面没有空格!

其他说明:符合条件的排名可能不是唯一的,此时要求输出时编号小的队伍在前;输入数据保证是正确的,即输入数据确保一定能有一个符合要求的排名。

Sample Input

4 3
1 2
2 3
4 3

Sample Output

1 2 4 3

思路:
一道经典的拓扑排序题,记录下每个点的入度值,将入度值为1的点的负数加入最大堆中,即可达到字典序最小的目的,同时,没取出一个点,将与这个点相连的其他点的入度减一,然后在判断是否为0,是否应该加入堆中,最终按顺序输出结果即可。

代码:

#include<iostream>
#include<queue>
#include<vector>
#include<string.h>
using namespace std;
struct edge
{
	int to,next;
}e[510*510];
int n,m,in[510],head[510],tot,a1,a2;
vector<int> ans;
void add(int x,int y)
{
	e[++tot].to=y,e[tot].next=head[x];
	head[x]=tot;
}
priority_queue<int> q;
bool toposort()
{
	for(int i=1;i<=n;i++)
	{
		if(in[i]==0)
		q.push(-i);
	}
	while(!q.empty())
	{
		int x=q.top();q.pop();
		ans.push_back(-x);
		for(int i=head[-x];i;i=e[i].next)
		{
			int y=e[i].to;
			if(--in[y]==0)
			q.push(-y);
		}
	}
	if(ans.size()==n)
	{
		for(int i=0;i<n;i++)
		{
			i==0?cout << ans[i]:cout <<" " << ans[i];
		}
		cout << endl;
		return true;
	}
	return false;
}
void clear()
{
	tot=0;
	memset(head,0,sizeof(head));
	memset(in,0,sizeof(in));
	memset(e,0,sizeof(e));
	ans.clear();
	while(!q.empty())
	q.pop();
}
int main()
{
	while(scanf("%d%d",&n,&m)!=EOF)
	{
		clear();
		while(m--)
		{
			scanf("%d%d",&a1,&a2);
			add(a1,a2);
			in[a2]++;
		}
		toposort();
	}
	
}

C - 班长竞选

大学班级选班长,N 个同学均可以发表意见 若意见为 A B 则表示 A 认为 B 合适,意见具有传递性,即 A 认为 B 合适,B 认为 C 合适,则 A 也认为 C 合适 勤劳的 TT 收集了M条意见,想要知道最高票数,并给出一份候选人名单,即所有得票最多的同学,你能帮帮他吗?

Input
本题有多组数据。第一行 T 表示数据组数。每组数据开始有两个整数 N 和 M (2 <= n <= 5000, 0 <m <= 30000),接下来有 M 行包含两个整数 A 和 B(A != B) 表示 A 认为 B 合适。
Output
对于每组数据,第一行输出 “Case x: ”,x 表示数据的编号,从1开始,紧跟着是最高的票数。 接下来一行输出得票最多的同学的编号,用空格隔开,不忽略行末空格!
Sample Input

2
4 3
3 2
2 0
2 1

3 3
1 0
2 1
0 2

Sample Output

Case 1: 2
0 1
Case 2: 2
0 1 2

代码:

对于这类存在强连通分量的题目来说,我们可以先将连通分量缩成一个点,然后形成一个无环有向图,然后从一个出度为0的scc开始向前遍历,将遍历到的每个scc的值都加入最终的结果中,当然,本身的这个scc需要减一。
首先我们从0开始进行一次dfs,然后将其逆序,在进行反图的dfs,得到的每一个连通分量进行标记,然后,将每个的联通分量的入度求出来,如果为0,则将其进行dfs遍历,将其结果相加,既得最终结果。

#include<iostream>
#include<string.h>
#include<algorithm>
#include<list>
using namespace std;
list<int> e[5010];
int n,c[5010],dfn[5010],vis[5010],dcnt,scnt,p[30010],q[30010];
bool visi[5001][5001];
int m,t,a1,a2,scc[5010],sccin[5010],countt=-1;
void dfs(int x)
{
	vis[x]=1;
	countt+=scc[x];
	//cout << x << " " ;
	list<int>::iterator it;
	it=e[x].begin();
	while(it!=e[x].end())
	{
		if(!vis[*it])
		dfs(*it);
		++it;
	}
}
void dfs1(int x)
{
	vis[x]=1;
	list<int>::iterator it;
	it=e[x].begin();
	while(it!=e[x].end())
	{
		if(!vis[*it])
		dfs1(*it);
		++it;
	}
	dfn[++dcnt]=x;
	//cout << x << endl;
}
void dfs2(int x)
{
	c[x]=scnt;
	//cout << scnt<<":"<<x << endl;
	list<int>::iterator it;
	it=e[x].begin();
	while(it!=e[x].end())
	{
		if(!c[*it])
		dfs2(*it);
		++it;
	}
}
void kosaraju()
{
	dcnt=scnt=0;
	memset(c,0,sizeof(c));
	memset(vis,0,sizeof(vis));
	for(int i=0;i<n;i++)
	{
		//cout << "i:" << i << endl;
		if(!vis[i])
		dfs1(i);
	}
	for(int i=0;i<=n;i++)
	e[i].clear();
		for(int i=1;i<=m;i++)
		{
			//cout << q[i] << p[i] <<endl;
			e[q[i]].push_back(p[i]);
		}
	for(int i=n;i>=1;i--)
	{
		if(!c[dfn[i]]) ++scnt,dfs2(dfn[i]);
	}
}
void clear()
{
	for(int i=0;i<=n;i++)
	e[i].clear();
	memset(dfn,0,sizeof(dfn));
	memset(scc,0,sizeof(scc));
	memset(sccin,0,sizeof(sccin));
	memset(p,0,sizeof(p));
	memset(q,0,sizeof(q));
	memset(visi,0,sizeof(visi));
}

int main()
{
	scanf("%d",&t);
	for(int w=1;w<=t;w++)
	{	
		scanf("%d%d",&n,&m);
		clear();
		for(int i=1;i<=m;i++)
		{
			scanf("%d%d",&a1,&a2);
			p[i]=a1;q[i]=a2;
			e[a1].push_back(a2);
		}
		kosaraju();
		for(int i=0;i<n;i++)
		{
			scc[c[i]]++;
		}
		for(int i=0;i<=n;i++)
		e[i].clear();
		for(int i=1;i<=m;i++)
		{
			if(c[q[i]]!=c[p[i]]&&!visi[c[q[i]]][c[p[i]]])
			{
				e[c[q[i]]].push_back(c[p[i]]);
				visi[c[q[i]]][c[p[i]]]=1;
				sccin[c[p[i]]]++;
			}//不在同一个连通分量。
		}
		int maxk=-1;
		memset(p,-1,sizeof(p));
		memset(q,0,sizeof(q));
		for(int i=1;i<=scnt;i++)
		{
			if(sccin[i]==0)
			{
				//cout << "i:" << i << endl;
				memset(vis,0,sizeof(vis));
				countt=-1;
				dfs(i);
				
				p[i]=countt;
				maxk=max(maxk,countt);		
			}
		}
		
		printf("Case %d: ",w);
		cout << maxk << endl;
		int g=0;
		for(int i=0;i<n;i++)
		{
			if(p[c[i]]==maxk)
			{
				g==0?cout << i:cout << " " << i;
				g++;
			}
		}
		cout << endl;
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值