poj 1981(单位圆覆盖点)

题意:一个单位圆最多能覆盖平面上多少点。

解题思路:一个覆盖最多点的圆,必然至少有两个点在圆上。枚举两个点,求过这两个点的单位圆,判断有多少个点在圆中,枚举N^2,判断N

参考博客:http://www.cnblogs.com/-sunshine/archive/2012/10/11/2719859.html


#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;

const int maxn = 305;
const double eps = 1e-8;
struct Point
{
	double x,y;
	Point(){}
	Point(double _x,double _y)
	{
		x = _x, y = _y;
	}
}p[maxn];
int n;

double dis(Point p1,Point p2)
{
	return sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y));
}

Point get_circle(Point p1,Point p2)
{
     Point mid = Point((p1.x+p2.x)/2,(p1.y+p2.y)/2);
	 double angle = atan2(p1.x-p2.x,p2.y-p1.y);
     double d = sqrt(1-dis(p1,mid)*dis(p1,mid));
     return Point(mid.x+d*cos(angle),mid.y+d*sin(angle)); 
}

int main()
{
	while(scanf("%d",&n),n)
	{
		for(int i = 0; i < n; i++)
			scanf("%lf%lf",&p[i].x,&p[i].y);
		int ans = 1;
		for(int i = 0;i < n; i++){
			for(int j = i + 1; j < n; j++){
				if(dis(p[i],p[j]) > 2.0) continue;
				Point central = get_circle(p[i],p[j]);
				int cnt = 0;
				for(int k = 0;k < n; k++)
					if(dis(central,p[k]) < 1.0 + eps)
						cnt++;
				ans=max(ans,cnt);
			}
		}
		printf("%d\n",ans);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值