hdu 5157(manacher+前缀和+树状数组)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5157

解题思路:

我们可以先用mancher算法对字符串进行处理,把以每个点为中心的回文串半径求出来,然后进行处理。

加入对以p为中心的点,从p-r[i]+1~p都是回文串的开头,那么对于每个回文串(开头是j)只要记录结尾从1~j-1的回文串个数,我们可以用dp记录以每个点为结尾的回文串个数,s[i]=sigma(dp[i]),则是结尾从1~j-1的回文串个数。那么对这个中心点来说一共的回文串对应该有:s[p-r[i]]+...+s[p-1]个,那么我们可以继续用一个数组s1[i]求s[i]的前缀和,那么总复杂度是O(n)。

至于dp[i]怎么求,你已经知道了半径,那从p~p+r[i]-1这些点的dp值都要加1,可以用树状数组来维护。

参考博客:http://blog.csdn.net/u013665921/article/details/42552603

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

typedef long long LL;
char c[200005],f[100005];
int r[200005],tree[200005];
LL s[200005],s1[200005];

int low(int n)
{
	return n & -n;
}

void merg(int p,int n,int k)
{
    while(p<=n)
	{
       tree[p]+=k;
        p=p+low(p);
    }
}

int sum(int p)
{
    int s=0;
    while(p>0)
	{
        s+=tree[p];
        p=p-low(p);
    }
    return s;
}

void mancher(int n)
{
    int id;
    r[0]=1;
    id=0;
    for(int i=1; i<=2*n; i++)
	{
        if(r[id]+id > i) r[i] = min(r[2*id-i],r[id]+id-i);
		else r[i] = 1;
        while(i-r[i]>=0 && i+r[i]<=2*n && c[i-r[i]]==c[i+r[i]]) r[i]++;
        if(i+r[i] > id+r[id])
            id=i;
    }
}

void get_back(int n)
{
    memset(tree,0,sizeof(tree));
    for(int i=1;i<=2*n;i++)
	{
        int p=i+r[i]-1;
        if(i%2==0)
		{
            if(p>i)
			{
                merg(i/2+1,n,1);
                merg(p/2+1,n,-1);
            }
        }
        else
		{
			merg((i+1)/2,n,1);
			merg(p/2+1,n,-1);
        }
    }
    s[0]=0;
    s1[0]=0;
    for(int i=1;i<=n;i++)
	{
        s[i]=s[i-1]+sum(i);
        s1[i]=s1[i-1]+s[i];
    }
}

void work(int n)
{
    LL ans=0;
    int i,j;
    for(i=1;i<=2*n;i++)
	{
        if(i % 2 == 0 && r[i] > 1)
			ans+=s1[i/2-1]-s1[(i-r[i]+1)/2-1];
        else if(i % 2 == 1)
            ans+=s1[(i+1)/2-1]-s1[(i-r[i]+1)/2-1];
    }
    cout << ans << endl;
}

int main()
{
    int i,j,n;
    while(scanf("%s",f)!=EOF)
	{
        n = strlen(f);
        c[0] = '#';
        for(i=1;i<=n;i++)
		{
            c[2*i] = '#';
            c[2*i-1] = f[i-1];
        }
        mancher(n);
        get_back(n);
        work(n);
    }
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值