BestCoder Round #84

第一题:Aaronson

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<math.h>
using namespace std;
typedef long long LL;
int pow(int a,int n){
    int ans = 1;
    while(n){
        if(n&1) ans = ans*a;
        a = a*a;
        n>>=1;
    }
    return ans;
}
int main()
{
    int tcase;
    scanf("%d",&tcase);
    while(tcase--){
        int n,m;
        scanf("%d%d",&n,&m);
        int k = n;
        int ans = 0,cnt = 0;
        while(n){
            cnt++;
            if(n%2==1) ans++;
            n/=2;
        }
        if(cnt<=m+1) printf("%d\n",ans);
        else {
            int cnt = 0;
            int t = pow(2,m);
            //printf("%d\n",k);
            while(k&&t){
                //printf("%d %d\n",k,t);
                cnt+=k/t;
                k = k - k/t*t;
                t/=2;
            }
            printf("%d\n",cnt);
        }
    }
	return 0;
}


第二题:Bellovin

解题思路:利用nlogn求LIS的方法即可,每次用二分找到的ai的位置,就是bi的值(因为保证字典序最小)

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;

const int maxn = 100005;
int n,a[maxn],d[maxn],ans[maxn];

int binsearch(int l,int r,int key)
{
	int mid;
	while(l <= r)
	{
		mid = (l + r) >> 1;
		if(d[mid] == key) return mid;
		else if(d[mid] < key) l = mid + 1;
		else r = mid - 1;
	}
	return l;
}

int main()
{
	int t;
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d",&n);
		for(int i = 1; i <= n; i++)
			scanf("%d",&a[i]);
		int len = 0;
		for(int i = 1; i <= n; i++)
		{
			int tmp = binsearch(1,len,a[i]);
			ans[i] = tmp;
			d[tmp] = a[i];
			if(tmp > len) len = tmp;
		}
		for(int i = 1; i < n; i++)
			printf("%d ",ans[i]);
		printf("%d\n",ans[n]);
	}
	return 0;
}



第四题: Dertouzos

解题思路:我们先分解d的因子,假设最大的为p,那么我们就需要找到一个最大的素数x,使得x*p<=d,否则求出的数最大的因子不可能是d,而是x*p,我们以n=20,d=8为例,最大的因子p=4,那么我们找到的最大素数只能是2,所以得出的结果是1。在寻找最大素数时,可以先打表,再用二分去求解。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;

typedef long long LL;
const int maxn = 100005;
int p[maxn],cnt;
LL prime[maxn];

void init()
{
    p[1] = 1;
	cnt = 0;
    for(LL i = 2; i <= 100000; i++)
    {
        if(!p[i])
		{
			prime[++cnt] = i;
            for(LL j= i * i; j <= 100000; j += i)
                p[j] = 1;
        }
	}
}

LL qpow(int a,int b,int r)
{
    LL ans=1,buff=a;
    while(b)
    {
        if(b&1)
            ans=(ans*buff)%r;
        buff=(buff*buff)%r;
        b>>=1;
    }
    return ans;
}
bool Miller_Rabbin(int n,int a)
{
    int r=0,s=n-1,j;
    if(!(n%a))
        return false;
    while(!(s&1))
    {
        s>>=1;
        r++;
    }
    LL k=qpow(a,s,n);
    if(k==1)
        return true;
    for(j=0;j<r;j++,k=k*k%n)
        if(k==n-1)
            return true;
    return false;
}
bool IsPrime(int n)
{
    int tab[5]={2,3,5,7};
    for(int i=0;i<4;i++)
    {
        if(n==tab[i])
            return true;
        if(!Miller_Rabbin(n,tab[i]))
            return false;
    }
    return true;
}


int main()
{
	int t;
	LL n,d;
	scanf("%d",&t);
	init();
	while(t--)
	{
		scanf("%lld%lld",&n,&d);
		LL m = 1;
		if(IsPrime(d) == false)
		{
			for(int i = 2; i * i <= d; i++)
				if(d % i == 0)
				{
					m = max(m,d / i);
					break;
				}
		}
		int l = 1,r = cnt,mid,ans = 0;
		while(l <= r)
		{
			mid = (l + r) >> 1;
			if(prime[mid] * d < n && prime[mid] * m <= d)
			{
				ans = mid;
				l = mid + 1;
			}
			else r = mid - 1;
		}
		printf("%d\n",ans);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值