poj 2455 Secret Milking Machine(二分枚举+最大流)

题意:

题意:FJ有N块地,这些地之间有P条双向路,每条路的都有固定的长度l。现在要你找出从第1块地到第n块地的T条不同路径,每条路径上的路不能与先前的路径重复,问这些路径中的最长路的最小是多少。

 

思路:二分答案+网络流判定。
二分枚举最大边权,重新建图,只保存权不超过最大边权的边。即如果边的长度小于等于我们规定的最大边权 则添加这条边 权值为1, 否则标记为0  

然后在网络中起点终点间的容量是原图中的路径数,判断最大流是否>=T

这里要注意的是,本题给的双向边,所以在添加反向弧时,容量应该等于正向弧。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;

const int maxn = 205;
const int INF = 0x3f3f3f3f;
struct Edge
{
	int from,to,next,w;
}edge[2*maxn*maxn],E[maxn*maxn];
int n,m,cnt,head[maxn];
int level[maxn];

void addedge(int u,int v,int w)
{
	edge[cnt].to = v;
	edge[cnt].w = w;
	edge[cnt].next = head[u];
	head[u] = cnt++;
	swap(u,v);
	edge[cnt].to = v;
	edge[cnt].w = w;
	edge[cnt].next = head[u];
	head[u] = cnt++;
}

void build(int limit)
{
	cnt = 0;
	memset(head,-1,sizeof(head));
	for(int i = 1; i <= m; i++)
		if(E[i].w <= limit)
			addedge(E[i].from,E[i].to,1);
}

int BFS(int src,int des){
    queue<int> q;
    memset(level,0,sizeof(level));
    level[src]=1;
    q.push(src);
    while(!q.empty()){
        int u = q.front();
        q.pop();
        if(u==des) return 1;
        for(int k = head[u];k!=-1;k=edge[k].next){
            int v = edge[k].to,w=edge[k].w;
            if(level[v]==0&&w!=0){
                level[v]=level[u]+1;
                q.push(v);
            }
        }
    }
    return -1;
}
int dfs(int u,int des,int increaseRoad){
    if(u==des) return increaseRoad;
    int ret=0;
    for(int k=head[u];k!=-1;k=edge[k].next){
        int v = edge[k].to, w = edge[k].w;
        if(level[v] == level[u] + 1 && w != 0){
            int MIN = min(increaseRoad-ret,w);
            w = dfs(v,des,MIN);
			if(w > 0)
			{
				edge[k].w -=w;
				edge[k^1].w+=w;
				ret+=w;
				if(ret==increaseRoad) return ret;
			}
			else level[v] = -1; 
        }
    }
    return ret;
}
int Dinic(int src,int des){
    int ans = 0;
    while(BFS(src,des)!=-1) ans+=dfs(src,des,INF);
    return ans;
}

int main()
{
	int t;
	while(scanf("%d%d%d",&n,&m,&t)!=EOF)
	{
		for(int i = 1; i <= m; i++)
			scanf("%d%d%d",&E[i].from,&E[i].to,&E[i].w);
		int l = 1, r = 1000000, mid,ans;
		while(l <= r)
		{
			mid = (l + r) >> 1;
			build(mid);
			int tmp = Dinic(1,n);
			if(tmp >= t)
			{
				ans = mid;
				r = mid - 1;
			}
			else l = mid + 1;
		}
		printf("%d\n",ans);
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值