hihocoder 第113周 Fibonacci(动态规划)

9 篇文章 0 订阅

题目大意:给定一个数字序列,求该序列的所有子序列中有多少是斐波拉契数列的前缀,即满足"1 1 2 3 ..."的形式。

解题思路:首先注意ai的范围,首先可以肯定斐波拉切数列不会太多,最多25个。那么可以利用动态规划的思想,dp[i][j]表示前i个串当中,以斐波拉切数列中的第j数个结尾的,有多少种。

那么可以很简单的得到状态转移方程:

IF a[i] = fib[j]

dp[i][j] = dp[i-1][j] + dp[i-1][j-1];

ELSE

dp[i][j] = dp[i-1][j]

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;

const int maxn = 1000005;
const int mod = 1e9+7;
int n,a[maxn],dp[maxn][30];
int fib[100005];

void init()
{
	fib[1] = fib[2] = 1;
	for(int i = 3; i <= 25; i++)
		fib[i] = fib[i-1] + fib[i-2];
}

int main()
{
	init();
	while(scanf("%d",&n)!=EOF)
	{
		memset(dp,0,sizeof(dp));
		for(int i = 1; i <= n; i++)
		{
			scanf("%d",&a[i]);
			if(a[i] == 1)
				dp[i][1] = (dp[i-1][1] + 1) % mod;
			else dp[i][1] = dp[i-1][1];
		}
		for(int i = 1; i <= n; i++)
			for(int j = 2; j <= 25; j++)
			{
				if(a[i] == fib[j])
					dp[i][j] = (dp[i-1][j] + dp[i-1][j-1]) % mod;
				else dp[i][j] = dp[i-1][j];
			}
		int ans = 0;
		for(int i = 1; i <= 25; i++)
			ans = (ans + dp[n][i]) % mod;
		printf("%d\n",ans);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值