【题解】CF919D Substring 题解

CF919D Substring 题解

传送门: ⊗ \otimes ⊕ \oplus

题目大意

给定一个 n n n m m m 边的有向图,每个顶点代表一个小写字母。定义一条路径的权值为出现最多次数的字母的出现次数。例如一条路径上的字母分别是 abaca,那么这条路径的权值就是 3 3 3。你的任务是找到这张图上最大的路径权值。(有环则输出 -1.)

样例输入

5 4
abaca
1 2
1 3
3 4
4 5

样例输出

3

解析

首先考虑 dfs/dp,在合并信息的过程中发现“最多出现的字母”是不可加的,也就是说不能只记录最多出现的字母。于是便想到了用 f i , j f_{i,j} fi,j 记录以 i i i 为结尾的路径中,字母 j j j 最多出现的次数。在这里,我们需要将小写字母量化,常用方法是 str[i] = s[i - 1] - 'a',即 ASCII 码相减。
再看题目中,有向图+环+路径,自然让人联想到了拓扑排序,核心思想是用一个节点的所有前驱更新这个节点的信息。将拓扑排序作为转移顺序,也就是拓扑排序的同时完成转移。对于一条边 ( u , v ) (u,v) (u,v),先将 u u u 的信息合并到 v v v 上,再考虑这条边产生的贡献。即对于 ∀ i , f v , i = max ⁡ ( f v , i , f u , i ) \forall i,f_{v,i}=\max(f_{v,i},f_{u,i}) i,fv,i=max(fv,i,fu,i),再把 v v v 对应的小写字母 s t r v str_v strv f u , s t r v + 1 f_{u,str_v}+1 fu,strv+1 更新最大值。
最后考虑一下环的情况。拓扑排序可以判环,记录入队的元素个数 c n t cnt cnt,若 c n t ≠ n cnt\not=n cnt=n(严格来讲是 c n t < n cnt<n cnt<n)则说明存在环,反之不存在。

代码

#include <bits/stdc++.h>
#define int long long
using namespace std;
inline int read(){
	char ch;
	int s = 0, w = 1;
	for(; ch < '0' || ch > '9'; w *= ch == '-' ? -1 : 1, ch = getchar());
	for(; ch >= '0' && ch <=' 9'; s = s * 10 + ch - '0', ch = getchar());
	return s * w;
}
const int MAXN = 300005;
const int MAXM = 300005;
int N, M, f[MAXN][30], str[MAXN], indeg[MAXN];
struct Graph{
	struct Edge{
		int to, nxt;
	} e[MAXM << 1];
	int head[MAXN], tot;
	void add(int u, int v){
		e[++tot].to = v;
		e[tot].nxt = head[u];
		head[u] = tot;
	}
} G;
signed main(){
	cin >> N >> M;
	string s;
	cin >> s; 
	for(int i = 1; i <= N; i++){
		str[i] = s[i - 1] - 'a';
		f[i][str[i]]++;
	}
	for(int i = 1, u, v; i <= M; i++){
		u = read(), v = read();
		indeg[v]++;
		G.add(u, v);
	}
	queue<int> q;
	int cnt = 0;
	for(int i = 1; i <= N; i++){
		if(indeg[i] == 0){
			q.push(i);
			cnt++;
		}
	}
	while(!q.empty()){
		int u = q.front();
		q.pop();
		for(int i = G.head[u], v; i; i = G.e[i].nxt){
			v = G.e[i].to;
			indeg[v]--;
			if(indeg[v] == 0) {
				q.push(v);
				cnt++;
			}
			for(int j = 0; j < 26; j++){
				f[v][j] = max(f[v][j], f[u][j]);
			}
			f[v][str[v]] = max(f[v][str[v]], f[u][str[v]] + 1);
		}
	}
	if(cnt != N){
		cout << -1 << endl;
		return 0;
	}
	int res = 0;
	for(int i = 1; i <= N; i++){
		for(int j = 0; j < 26; j++){
			res = max(res, f[i][j]);
		}
	}
	cout << res << endl;
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
很高兴为您提供 Mathor Cup 2022 D 题的解题思路。 题目描述: 给定一个 $n\times n$ 的矩阵 $A$,其中 $A_{i,j}\in\{0,1\}$。你可以进行任意次以下操作: 1. 将第 $i$ 行取反(即 $A_{i,j}\rightarrow 1-A_{i,j}$); 2. 将第 $j$ 列取反(即 $A_{i,j}\rightarrow 1-A_{i,j}$)。 请你计算通过若干次操作后,能够使得矩阵 $A$ 的每一行和每一列的 $1$ 的个数相等的最小操作次数。 解题思路: 本题可以使用贪心和二分图匹配的思想来解决。具体步骤如下: 1. 统计每一行和每一列的 $1$ 的个数,设 $row_i$ 表示第 $i$ 行的 $1$ 的个数,$col_j$ 表示第 $j$ 列的 $1$ 的个数。 2. 如果每一行和每一列的 $1$ 的个数都相等,那么无需进行任何操作,直接输出 $0$。 3. 如果某一行 $i$ 的 $1$ 的个数多于其他行的 $1$ 的个数,那么可以将该行取反,将 $row_i$ 减一,将 $col_j$ 加一。 4. 如果某一列 $j$ 的 $1$ 的个数多于其他列的 $1$ 的个数,那么可以将该列取反,将 $col_j$ 减一,将 $row_i$ 加一。 5. 重复步骤 3 和步骤 4,直到每一行和每一列的 $1$ 的个数都相等。 6. 计算进行的操作次数,输出结果。 需要注意的是,为了避免重复计算,我们可以使用二分图匹配的思想来进行操作。将每一行和每一列看做二分图的两个部分,如果某一行 $i$ 的 $1$ 的个数多于其他行的 $1$ 的个数,那么可以将第 $i$ 行和所有 $1$ 的个数比该行少的列建立一条边;如果某一列 $j$ 的 $1$ 的个数多于其他列的 $1$ 的个数,那么可以将第 $j$ 列和所有 $1$ 的个数比该列少的行建立一条边。最后,将二分图的最小路径覆盖数乘以 $2$ 就是最小操作次数。 时间复杂度:$O(n^3)$。 完整代码:

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值