单代号网络图
- 六标时法
- 正推法
- 逆推法
六标时法 | ||
---|---|---|
最早开始时间(ES) | 工期 | 最早完成时间(EF) |
活动名称/活动编号 | ||
最迟开始时间(LS) | 浮动时间(总时差) | 最迟完成时间(LF) |
关键路径、计算项目的总工期
- 关键路径是最大长度
- 关键路径上的活动是关键活动
- 关键活动之和为总工期
关键路径变化问题
压缩工期时要注意关键路径的变化问题, 一个项目可以存在1条或多条关键路径。
标号法求最短最长路径
类似于贪心算法
总时差、自由时差
总时差(总浮动时间),指工序推迟开工而不会影响总工期的最大时间。也就是说活动的总时差跟总工期相比较,以自己为参照物的浮动时间。
自由时差(自由浮动时间),指不影响紧后活动最早开始时间的最大时间。与紧后活动相较而言。
总时差
=
最迟
−
最早(开始或结束)
总时差 = 最迟 - 最早 (开始或结束)
总时差=最迟−最早(开始或结束)
自由时差
=
m
i
n
{
紧后活动的
E
S
}
−
此活动的
E
F
自由时差 = min\{紧后活动的ES\} - 此活动的EF
自由时差=min{紧后活动的ES}−此活动的EF
- 关键路径上的活动总时差 = 自由时差 = 0
- 非关键路径上活动的总时差 = 关键路径长度 - 经过该活动最大非关键路径长度
- 非关键路径上活动的自由时差
非关键活动自由时差 = { 自由时差 = 总时差 ,紧后工作是关键工作 自由时差 = 0 ,紧后工作不是关键工作 自由时差 = 0 ,紧后工作有关键工作和非关键工作 非关键活动自由时差= \begin{cases} 自由时差 = 总时差&, \text{紧后工作是关键工作}\\ 自由时差 = 0&, \text{紧后工作不是关键工作}\\ 自由时差 = 0&, \text{紧后工作有关键工作和非关键工作} \end{cases} 非关键活动自由时差=⎩ ⎨ ⎧自由时差=总时差自由时差=0自由时差=0,紧后工作是关键工作,紧后工作不是关键工作,紧后工作有关键工作和非关键工作
压缩工期
- 压缩关键活动
- 压缩可以压缩的活动
- 压缩代价最小的活动
- 注意压缩后关键路径是否变化
期望值、标准差、方差、完工概率
计划评审技术(PERT),又称“三点估算”技术
期望值 t E = t o + 4 t m + t p 6 期望值t_E = \frac{t_o + 4t_m + t_p}{6} 期望值tE=6to+4tm+tp
标准差 σ ( 西格玛 ) = t p − t o 6 标准差σ(西格玛) = \frac{t_p - t_o}{6} 标准差σ(西格玛)=6tp−to
方差 = σ 2 方差 = σ^2 方差=σ2
完工概率 = 每个活动的完工概率相乘 完工概率 = 每个活动的完工概率相乘 完工概率=每个活动的完工概率相乘
完工概率计算三步走:
- 算期望值 t E t_E tE
- 算标准差 σ σ σ
- 画抛物线(正态分布图)
面积法求完工概率(正态分布,68%,95%,99%)
双代号网络图和单代号网络图的区别
-
箭线:单代号中表示逻辑关系,双代号中表示某项工作
-
节点:单代号中节点表示工作,必须编号;双代号中节点表示事件
-
虚工作: 单代号中没有虚工作,双代号中表示工作的先后顺序。
时标网络图
时标网络图兼具单代号网络图和横道图的优点,直观易懂。
-
用箭线表示活动,箭线在水平方向的投影长度表示工序的作业时间
-
用波浪线表示活动与紧后活动的自由时差
-
用虚线表示虚活动(检测点)
-
当实箭线后有波浪线且末端有垂直部分时,垂直部分用实线绘制
我是 甜点cc
公众号:【看见另一种可能】