- 博客(91)
- 资源 (6)
- 收藏
- 关注
原创 总时差与自由时差
什么是总时差,什么是自由时差?两者有什么区别和联系?总时差可以看作是一种特定情况下的自由时差。自由时差是相较于结点前链路而言的,总时差是相较于关键路径而言的,从这种意义上来讲,总时差总是大于等于自由时差的。
2023-03-05 05:15:00
3760
3
原创 复合函数求导 链式法则证明
链式法则(chain rule)是微积分中的求导法则,用于求得一个复合函数的导数,是微积分求导运算中的一种常用方法。已知导数定义为:假设有函数,其中和为函数,为常数,使得在可导,且在处可导;则有,即。关于其数学证明如下。证明:根据可导的定义其中,是余项,当时,。同理其中,当时,。现对有其中,。注意,当时,,故...
2022-05-26 15:23:38
2009
原创 凯利公式及其推导过程
问题描述凯利公式f=(pb-q)/b其中,f为现有资金应进行下次投注的比例;p为赢的概率,q为输的概率,b为净赔率。举个例子推导过程设本金为C,投资比例为f,那么投资一次之后本金会发生变化。如果投资成功,本金变为C+C*b*f如果投资失败,本金变为C-f*C设p为赢的概率,那么投资N次之后本金变为想要求本金的最大值时f的取值,我们可以对f求导数,导数等于0的点即为函数的极值点。直接求导数不好求,可以对其取对数,因为对数函数是增函数...
2021-12-21 00:16:18
6796
1
翻译 神经网络风格迁移Pytorch
原文链接引言(Introduction)本教程解释了如何实现由Leon A Gatys, Alexander S. Ecker和Matthias Bethge开发的神经风格迁移算法(Neural-Stylealgorithm)。该算法需要三个图片:一个输入图片pi,一个内容图片pc,一个风格图片ps,然后把图片pi转换成一个和pc图片的内容相似,并与ps图片的风格相似的图片。基础原理(Underlying Principle)原理很简单:我们定义两个距离,一个用于内容(DC),另一个用.
2020-12-13 10:20:57
2121
翻译 Pytorch生成对抗网络(GAN)官方入门教程
原文链接:https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html引言
2020-12-03 22:58:52
9495
1
原创 机器学习之朴素贝叶斯(入门与实战)
本文的目的是使你对朴素贝叶斯在理论上有一个入门的理解,在实战方面呢也有一个入门的小示例,看完以后你就可以开启你的进阶之路了。哈哈哈。朴素贝叶斯算法是统计学的一种分类方法,它是一种运用概率统计知识进行分类的算法。在许多场合,朴素贝叶斯方法可以与决策树、神经网络分类算法相媲美。该算法能运用到大型数据库中,而且方法简单,分类准确率高,速度快,由于贝叶斯定理假设一个属性值对给定类的影响独立于其它属性值,而此假设在实际情况中经常是不成立的,因此其分类准确率可能会下降。为此也衍生出很多降低独立性假设的贝叶斯分类算法
2020-11-06 11:28:09
693
1
原创 RuntimeError: Expected object of scalar type Float but got scalar type Double for argument #2 ‘mat1‘
解决方法:在DataSet初始化函数中,显示指明dtype为np.float32self.datas = np.array(datas ,dtype=np.float32)参考链接:https://stackoverflow.com/questions/60020184/runtimeerror-expected-object-of-scalar-type-float-but-got-scalar-type-double-fo...
2020-10-01 00:26:44
173
原创 UnicodeDecodeError:‘utf-8‘ codec can‘t decode byte 0xc3 in position 26: invalid continuation byte
问题描述:UnicodeDecodeError:'utf-8' codec can't decode byte 0xc3 in position 26: invalid continuation byte解决方法:打开文件,另存为为utf-8格式即可。
2020-09-11 19:51:55
891
原创 FutureWarning: Passing (type, 1) or ‘1type‘ as a synonym of type is deprecated; in a future version
完整错误信息:C:\Users\Lihjia\Anaconda3\envs\tf114gpu\lib\site-packages\tensorboard\compat\tensorflow_stub\dtypes.py:541: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (typ
2020-07-01 19:42:31
344
原创 Ubuntu下安装GNU Octave
第一步:安装FlatpakFlatpak 是一个分发桌面应用的框架,可以在大多数的主流 Linux 发行版上安装使用。安装命令如下:$ sudo add-apt-repository ppa:alexlarsson/flatpak$ sudo apt update$ sudo apt install flatpak安装成功以后,需要添加Flathub 仓库,命令如下:$...
2019-10-30 17:47:08
558
原创 The repository 'http://ppa.launchpad.net/octave/stable/ubuntu bionic Release' does not have a Releas
问题描述:在ubuntu虚拟机下尝试安装octave,添加源之后报错sudo apt-add-repository ppa:octave/stable错误信息提示如下:The repository 'http://ppa.launchpad.net/octave/stable/ubuntu bionic Release' does not have a Release file....
2019-10-30 15:24:59
3407
原创 pycharm pandas 输出结果中有省略号
问题描述:使用pandas进行数据处理时,经常需要打印几条信息来直观了解数据信息import pandas as pddata=pd.read_csv(r"user.csv",low_memory=False)print(data.head(5))但是pandas默认一行的width为80且展示一条记录信息。如下所示。解决方案:设置pandas的显示参数(最大列数,...
2019-09-19 01:00:53
1922
原创 系统集成案例分析知识点
总浮动时间和自由浮动时间总浮动时间是在不影响项目工期的情况下的浮动时间。公式为:(最晚开始时间-最早开始时间)或(最晚结束时间-最早结束时间)自由浮动时间是在不影响任一紧后活动的最早开始时间,某活动可推迟的时间。公式为:(后续活动的最早开始时间-本活动的最早结束时间)后续活动为多个,应取最小值缩短项目工期的方法:1.赶工2.快速跟进,并行施工,以缩短关键路径的长度3.使用高素质的资源...
2018-11-08 11:21:01
4125
2
原创 系统集成知识点
配置项版本号规则配置项的版本号规则与配置项的状态相关。(1)处于“草稿”状态的配置项的版本号格式为0.YZ,YZ的数字范围为01-99(2)处于“正式”状态的配置项的版本号格式为X.Y,X为主版本号,取值范围为1-9。Y为次版本号,取值范围为0-9.配置项第一次成为“正式”文件时,版本号为1.0(3)处于“修改”状态的配置项的版本号格式为X.YZ。配置项正在修改时,一般只增大Z值,X.Y...
2018-10-31 15:11:14
2375
原创 迈向未来
区块链应用主要集中在四个方面:一是资产代币化,信用代币化;二是智能合约;三是打通信息孤岛;四是自治。凯文·凯利《必然》:“全球经济正在向非实体的比特世界靠拢。同时,它也在远离所有权,向使用权靠拢;远离复制价值,向网络价值靠拢。”在商业领域中,信用是双发达成合作的基础。传统信用体系的建立要依靠很多“中心”,也就是所谓的机构,第三方或者中介。这意味着繁琐的手续和更高的成本,而我们的部分资产将被...
2018-10-24 23:42:51
228
1
原创 简述维特比算法(Viterbi Algorithm)
维特比算法是一个特殊但应用最广的动态规划算法。利用动态规划,可以解决任何一个图中的最短路径问题。而维特比算法是针对一个特殊的图——篱笆网络(Lattice)的有向图最短路径的问题而提出的。它之所以重要,是因为凡是使用隐含马尔可夫模型描述的问题都可以使用它来解码,包括今天的数字通信、语音识别、机器翻译、拼音转汉字、分词等。下面用输入法拼音转汉字来说明。假定用户盲打时输入的拼音是,对应的汉字是(为...
2018-09-07 13:30:40
6359
1
原创 已知三点坐标,求圆心坐标 (外接圆)python实现
问题描述:已知三点不共线坐标,做外接圆,求圆心坐标x0,y0,半径R算法思想:根据三点到圆心的距离为R*R,联立求出python实现:class Point(): def __init__(self, x, y): self.x = x self.y = ydef getCircle(p1, p2, p3): x21 = p2.x...
2018-09-06 14:37:59
14382
5
原创 python 实现 模板模式
本文的目录地址本文的代码地址编写优秀代码的一个要素是避免冗余。在面向对象编程中,方法和函数是我们用来避免编写冗余代码的重要工具。回想策略模式中的sorted()例子。sorted()函数非常通用,可使用任意键来对多种数据结构(列表、元组和命名元组等)进行排序。这是一个良好函数的定义。sorted()这样的函数属于理想的案例。现实中,我们没法始终写出100%通用的代码。许多算法都有一些(...
2018-09-06 13:56:02
3976
1
原创 python 实现 原型模式
本文的目录地址本文的代码地址有时,我们需要原原本本地为对象创建一个副本。举例来说,假设你想创建一个应用来存储、分享、编辑(比如,修改、添加注释及删除)食谱。用户Bob找到一份蛋糕食谱,在做了一些改变后,觉得自己做的蛋糕非常美味,想要与朋友Alice分享这个食谱。但是该如何分享食谱呢?如果在与Alice分享之后,Bob想对食谱做进一步的试验,Alice手里的食谱也能跟着变化吗?Bob能...
2018-09-05 15:59:01
982
原创 python 实现 建造者模式
本文目录地址本文代码地址想象一下,我们想要创建一个由多个部分构成的对象,而且它的构成需要一步接一步地完成。只有当各个部分都创建好,这个对象才算是完整的。这正是建造者设计模式(Builder design pattern)的用武之地。建造者模式将一个复杂对象的构造过程与其表现分离,这样,同一个构造过程可用于创建多个不同的表现。我们来看个实际的例子,这可能有助于理解建造者模式的目的。假设我...
2018-09-04 13:10:13
1382
原创 python 实现 工厂模式
本文目录地址本文代码地址创建型设计模式处理对象创建相关的问题,目标是当直接创建对象(在Python中是通过__init__()函数实现的)不太方便时,提供更好的方式。在工厂设计模式中,客户端①可以请求一个对象,而无需知道这个对象来自哪里;也就是,使用哪个类来生成这个对象。工厂背后的思想是简化对象的创建。与客户端自己基于类实例化直接创建对象相比,基于一个中心化函数来实现,更易于追踪创建了哪...
2018-09-03 15:51:21
5390
原创 简述隐含马尔可夫模型
隐含马尔可夫模型常用于解决自然语言处理的问题。例如语音识别、机器翻译等。目录通信模型隐含马尔可夫模型延伸阅读:隐含马尔可夫的训练小结通信模型在通信模型中,如何根据观察数据o1,o2,o3,...来推测信号源发送的信息s1,s2,s3,...呢?用概率论的语言来表述,就是求在已知o1,o2,o3,...的情况下s1,s2,s3,...的最大概率,即根据P(A|...
2018-08-31 12:59:34
2480
2
翻译 使用Pytorch实现NLP深度学习
原文链接:https://pytorch.org/tutorials/beginner/deep_learning_nlp_tutorial.html本文将会帮助你了解使用Pytorch进行深度学习编程的关键思想。一些章节内容(计算图和梯度)不是Pytorch所特有的,而是所有深度学习工具包都包含的内容。本文旨在为那些从未接触过其它深度学习框架(如TensorFlow,Theano,...
2018-08-23 14:17:37
16118
4
原创 pytorch GPU环境搭建(win10,python3.6,pycharm,cuda9.2,anaconda3.5.2)
cuda下载地址:https://developer.nvidia.com/cuda-downloadspytorch离线安装包下载地址:https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/pycharm下载地址:http://www.jetbrains.com/pycharm/anaconda下载地址:...
2018-08-15 22:46:01
10268
1
原创 pytorch之expand,gather,squeeze,sum,contiguous,softmax,max,argmax
目录gathersqueeze expandsumcontiguoussoftmaxmaxargmaxgathertorch.gather(input,dim,index,out=None)。对指定维进行索引。比如4*3的张量,对dim=1进行索引,那么index的取值范围就是0~2.input是一个张量,index是索引张量。input和index的s...
2018-08-06 17:13:33
9158
翻译 pytorch入门
原文链接:https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html这个教程的目标是:对PyTorch的张量和神经网络有大致的了解 训练一个小的图片分类的神经网络。本教程假设你对numpy有一个基础的了解注意:确保你已经安装了torch和torchvision模块目录什么是PyTorch?入...
2018-08-04 22:54:27
15123
4
原创 python 实现 状态模式
本文的目录地址本文的代码地址面向对象编程着力于在对象交互时改变它们的状态。在很多问题中,有限状态机(通常名为状态机)是一个非常方便的状态转换建模(并在必要时以数学方式形式化)工具。首先,什么是状态机?状态机是一个抽象机器,有两个关键部分,状态和转换。状态是指系统的当前(激活)状况。例如,假设我们有一个收音机,其两个可能的状态是在调频波段(FM)或调幅波段(AM)上调节。另一个可能的状态是从...
2018-07-26 16:35:55
4310
原创 python 实现 观察者模式
本文的目录地址本文的代码地址有时,我们希望在一个对象的状态改变时更新另外一组对象。在MVC模式中有这样一个非常常见的例子,假设在两个视图(例如,一个饼图和一个电子表格)中使用同一个模型的数据,无论何时更改了模型,都需要更新两个视图。这就是观察者设计模式要处理的问题。观察者模式描述单个对象(发布者,又称为主持者或可观察者)与一个或多个对象(订阅者,又称为观察者)之间的发布—订阅关系。在MV...
2018-07-25 16:57:39
1133
原创 python 实现 解释器模式
本文的目录地址本文的代码地址对每个应用来说,至少有以下两种不同的用户分类。 基本用户:这类用户只希望能够凭直觉使用应用。他们不喜欢花太多时间配置或学习应用的内部。对他们来说,基本的用法就足够了。 高级用户:这些用户,实际上通常是少数,不介意花费额外的时间学习如何使用应用的高级特性。如果知道学会之后能得到以下好处,他们甚至会去学习一种配置(或脚本)语言。 能够更好地控制一...
2018-07-25 14:36:29
958
原创 python 实现 策略模式
本文的目录地址本文的代码地址大多数问题都可以使用多种方法来解决。以排序问题为例,对于以一定次序把元素放入一个列表,排序算法有很多。通常来说,没有公认最适合所有场景的算法。一些不同的评判标准能帮助我们为不同的场景选择不同的排序算法,其中应该考虑的有以下几个。需要排序的元素数量算法的最佳、平均、最差时间复杂度算法的空间复杂度算法的稳定性算法的代码实现复杂度可能还有更多的评判标准值得考虑,但重要的是,我...
2018-07-05 17:23:55
1466
原创 python 实现 外观模式
不错!这一方案同时具备可读的代码和可接受的性能。此时,你可能想争论说这不是修饰器模式,因为我们并不是在运行时应用它。被修饰的函数确实无法取消修饰,但仍然可以在运行时决定是否执行修饰器。这个有趣的练习就留给你来完成吧。使用修饰器进行一层额外的封装,基于某个条件来决定是否执行真正的修饰器。修饰器的另一个有趣的特性是可以使用多个修饰器来修饰一个函数。本章没有涉及这一特性,因此这是另一个练习,创建一个修饰...
2018-06-15 14:45:25
712
原创 conda: command not found
问题描述:Ubuntu下安装Anaconda2-5.2.0-Linux-x86_64.sh之后重启,conda命令不识别分析:首先,Anaconda提供了包管理和虚拟环境管理功能,可以方便地解决多版本python共存、切换以及第三方包安装问题。回归正题,安装完了不识别,推测是路径没有加入到环境变量PATH中。解决方法:1.编辑文件sudo gedit etc/profile 2.将添加到文件的最后...
2018-06-12 17:49:48
1941
1
入门65题答案(针对PMBOK第5版教材)
2017-06-20
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人