二、矩阵及其运算

一、定义

由m×n个数 a i j a_{ij} aij i = 1 , 2 , … , m ; j = 1 , 2 , … , n i=1,2,\dots,m;j=1,2,\dots,n i=1,2,,m;j=1,2,,n)排成的m行n列的数表称为m行n列矩阵
A = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n ) A=\left(\begin{array}{cccc}{a_{11}} & {a_{12}} & {\cdots} & {a_{1 n}} \\ {a_{21}} & {a_{22}} & {\cdots} & {a_{2 n}} \\ {\vdots} & {\vdots} & {} & {\vdots} \\ {a_{m 1}} & {a_{m 2}} & {\cdots} & {a_{m n}}\end{array}\right) A=a11a21am1a12a22am2a1na2namn

二、特殊矩阵

2.1、实矩阵

所有元素均为实数的矩阵

2.2、复矩阵

所有元素均为复数的矩阵

2.3、零矩阵

所有元素均为0的矩阵

2.4、负矩阵

所有元素均为负数的矩阵

2.5、方阵

行列相等的矩阵,简称n阶方阵,记作 A n A_n An

2.6、行(列)矩阵

只有一行(列)的矩阵

2.7、对角阵

主对角线以外的元素都是0,记作 Λ = diag ⁡ ( λ 1 , λ 2 , ⋯   , λ n ) \boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right) Λ=diag(λ1,λ2,,λn)

2.8、单位阵

主对角线全为1,其它元素都是0,记作E

2.9、纯量阵(数量矩阵)

λ E = ( λ λ ⋱ λ ) \lambda E=\left(\begin{array}{cccc}{\lambda} \\ {} & {\lambda} \\ {} & {} & {\ddots} \\ {} & {} & {} & {\lambda}\end{array}\right) λE=λλλ

2.10、上(下)三角矩阵

主对角线以下(上)的元素都为0的矩阵

2.11、(反)对称矩阵

沿主对角线对应位置的元素相等的矩阵,记作 a i j = a j i a_{ij}=a_{ji} aij=aji
( 1 1 − 1 1 2 4 − 1 4 3 ) \left(\begin{array}{ccc}{1} & {1} & {-1} \\ {1} & {2} & {4} \\ {-1} & {4} & {3}\end{array}\right) 111124143

2.11.1性质
  1. 两个同阶对称矩阵,其和、差、数乘也是对称的;
  2. 两个同阶对称矩阵,其乘积不是对称的;
  3. A = A T A=A^T A=AT
  4. A,B对称,AB对称的充要条件是AB可交换

2.12、反对称矩阵

主对角线全为0,沿主对角线对应位置的元素互为相反数的矩阵,记作 a i j = − a j i a_{ij}=-a_{ji} aij=aji
( 0 1 − 3 − 1 0 − 4 3 4 0 ) \left(\begin{array}{ccc}{0} & {1} & {-3} \\ {-1} & {0} & {-4} \\ {3} & {4} & {0}\end{array}\right) 013104340

2.12.1、性质
  1. 两个同阶对称矩阵,其和、差、数乘也是反对称的;
  2. 两个同阶对称矩阵,其乘积不是反对称的;
  3. A = − A T A=-A^T A=AT

三、矩阵运算

3.1、加(减)法性质

  1. A + B = B + A A+B=B+A A+B=B+A
  2. ( A + B ) + C = A + ( B + C ) (A+B)+C=A+(B+C) (A+B)+C=A+(B+C)
  3. A + O = A A+O=A A+O=A
  4. A − A = O A-A=O AA=O
  5. A + B = C A = C − B A+B=CA=C-B A+B=CA=CB

3.2、数乘运算

数λ与矩阵A的乘积记作λA或Aλ

3.2.1、性质
  1. ( λ μ ) A = λ ( μ A ) (λμ)A =λ(μA) (λμ)A=λ(μA)
  2. ( λ + μ ) A = λ A + μ A (λ+μ)A =λA+μA (λ+μ)A=λA+μA
  3. λ ( A + B ) = λ A + λ B λ(A+B)=λA+λB λ(A+B)=λA+λB

3.3、矩阵相乘

设A是一个m×s矩阵,B是一个s×n矩阵,那么规定矩阵A与矩阵B的乘积是一个m×n矩阵C

c i j = a i 1 b 1 j + a i 2 b 2 j + ⋯ + a i j b j j = ∑ k = 1 s a i k b k j ( i = 1 , 2 , … , m ; j = 1 , 2 , … , n ) c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i j} b_{j j}=\sum_{k=1}^{s} a_{i k} b_{k j}(i=1,2,\dots,m;j=1,2,\dots,n) cij=ai1b1j+ai2b2j++aijbjj=k=1saikbkj(i=1,2,,m;j=1,2,,n)

3.3.1、性质
  1. A B ≠ B A AB≠BA AB=BA
  2. A B = B A AB=BA AB=BA,则A、B可交换
  3. ( A B ) C = A ( B C ) (AB)C=A(BC) (AB)C=A(BC)
  4. λ ( A B ) = ( λ A ) B = A ( λ B ) λ(AB)=(λA)B=A(λB) λ(AB)=(λA)B=A(λB)
  5. A ( B + C ) = A B + A C , ( B + C ) A = B A + C A A(B+C)= AB +AC, (B+C)A =BA+CA A(B+C)=AB+AC,(B+C)A=BA+CA

四、矩阵转置

把矩阵A的行换成同序数的列得到一个新矩阵,叫做A的转置矩阵记作 A T A^T AT

4.1、性质

  1. ( A T ) T = A (A^T)^T=A (AT)T=A
  2. ( A + B ) T = A T + B T (A+B)^T = A^T +B^T (A+B)T=AT+BT
  3. ( λ A ) T = λ A T (λA)^T=λA^T (λA)T=λAT
  4. ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT

五、矩阵的行列式

由n阶方阵A的元素所构成的行列式(各元素的位置不变),称为方阵A的行列式,记作 d e t ( A ) det(A) det(A) ∣ A ∣ |A| A

5.1、性质

  1. ∣ A T ∣ = ∣ A ∣ |A^T|=|A| AT=A
  2. ∣ λ A ∣ = λ n ∣ A ∣ |λA|=λ^n|A| λA=λnA
  3. ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| AB=AB

六、伴随矩阵

行列式 ∣ A ∣ |A| A的各个元素的代数余子式 A i j A_{ij} Aij所构成的如下的矩阵
A ∗ = ( A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋮ A 1 n A 2 n ⋯ A n n ) A^{*}=\left(\begin{array}{cccc}{A_{11}} & {A_{21}} & {\cdots} & {A_{n 1}} \\ {A_{12}} & {A_{22}} & {\cdots} & {A_{n 2}} \\ {\vdots} & {\vdots} & {} & {\vdots} \\ {A_{1 n}} & {A_{2 n}} & {\cdots} & {A_{n n}}\end{array}\right) A=A11A12A1nA21A22A2nAn1An2Ann

称为矩阵A的伴随矩阵

6.1、性质

  1. A A ∗ = A ∗ A = ∣ A ∣ E AA^* =A^*A =|A|E AA=AA=AE 永远成立
  2. ∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^*|=|A|^{n-1} A=An1 永远成立

七、逆矩阵

对于n阶矩阵 A A A,如果有一个n阶矩阵 B B B,使 A B = B A = E AB=BA=E AB=BA=E,则说矩阵 A A A是可逆的,并把矩阵 B B B称为 A A A的逆矩阵,简称逆阵,记作 A − 1 A^{-1} A1

7.1、定理

  1. 未必所有方阵均可逆;

  2. 若方阵 A A A可逆,其逆矩阵 A − 1 A^{-1} A1唯一;

  3. 若矩阵 A A A可逆,则 ∣ A ∣ ≠ 0 |A|≠0 A=0

  4. ∣ A ∣ ≠ 0 |A|≠0 A=0,则矩阵A可逆(非奇异、非退化、满秩),且
    A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|}A^* A1=A1A
    其中 A ∗ A^* A 是A的伴随矩阵

  5. 由定理4,退出 A ∗ = ∣ A ∣ A − 1 A^*=|A|A^{-1} A=AA1

  6. A B = E AB=E AB=E(或 B A = E BA=E BA=E),则 B = A − 1 B=A^{-1} B=A1

7.2、性质

  1. A A A可逆,则 A − 1 A^{-1} A1亦可逆,且 ( A − 1 ) − 1 = A (A^{-1})^{-1}=A (A1)1=A
  2. A A A可逆,数 λ ≠ 0 λ≠0 λ=0,则 λ A λA λA可逆,且
    ( λ A ) − 1 = 1 λ A − 1 (λA)^{-1}=\frac{1}{λ}A^{-1} (λA)1=λ1A1
  3. 若A、B为同阶矩阵且均可逆,则AB亦可逆,且 ( A B ) − 1 = B − 1 A − 1 (AB)^{-1} = B^{-1}A^{-1} (AB)1=B1A1
  4. 若A可逆,则 A T A^T AT亦可逆,且 ( A T ) − 1 = ( A − 1 ) T (A^T)^{-1}=(A^{-1})^T (AT)1=(A1)T
  5. 若A可逆,则 ∣ A − 1 ∣ = ∣ A ∣ − 1 |A^{-1}|=|A|^{-1} A1=A1
  6. 若A可逆,则 A ∗ A^* A也可逆,且
    ( A ∗ ) − 1 = 1 ∣ A ∣ A = ∣ A ∣ − 1 A (A^*)^{-1}=\frac{1}{|A|}A=|A|^{-1}A (A)1=A1A=A1A

7.3、如何求 A − 1 A^{-1} A1

  1. 伴随矩阵法
  2. 初等变换法

八、分块矩阵

对于行数和列数较高的矩阵A,运算时常采用分块法,使大矩阵的运算化成小矩阵的运算。将矩阵 A用若干条纵线和横线分成许多个小矩阵,每一个小矩阵称为A的子块,以子块为元素的形式上的矩阵称为分块矩阵。

A = ( a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 ) = ( A 11 A 12 A 21 A 22 ) A=\left( \def\arraystretch{1.5} \begin{array}{cc:cc} {a_{11}} & {a_{12}} & {a_{13}} & {a_{14}} \\ {a_{21}} & {a_{22}} & {a_{23}} & {a_{24}} \\ \hdashline {a_{31}} & {a_{32}} & {a_{33}} & {a_{34}} \end{array}\right)=\left(\begin{array}{ll}{A_{11}} & {A_{12}} \\ {A_{21}} & {A_{22}}\end{array}\right) A=a11a21a31a12a22a32a13a23a33a14a24a34=A11A21A12A22

8.1、分块矩阵的运算

8.1.1、加法

( A 1 A 2 A 3 A 4 ) + ( B 1 B 2 B 3 B 4 ) = ( A 1 + B 1 A 2 + B 2 A 3 + B 3 A 4 + B 4 ) \left( \begin{array}{ll} {A_{1}} & {A_{2}} \\ {A_{3}} & {A_{4}} \end{array} \right)+\left( \begin{array}{ll} {B_{1}} & {B_{2}} \\ {B_{3}} & {B_{4}} \end{array} \right)=\left( \begin{array}{ll} {A_{1}+B_{1}} & {A_{2}+B_{2}} \\ {A_{3}+B_{3}} & {A_{4}+B_{4}} \end{array} \right) (A1A3A2A4)+(B1B3B2B4)=(A1+B1A3+B3A2+B2A4+B4)

8.1.2、数乘

k ( A 1 A 2 A 3 A 4 ) = ( k A 1 k A 2 k A 3 k A 4 ) k\left( \begin{array}{l} {A_{1}} & {A_{2}} \\ {A_{3}} & {A_{4}} \end{array} \right)=\left( \begin{array}{ll} {k A_{1}} & {k A_{2}} \\ {k A_{3}} & {k A_{4}} \end{array}\right) k(A1A3A2A4)=(kA1kA3kA2kA4)

8.1.3、乘法

( A 1 A 2 A 3 A 4 ) ( B 1 B 2 B 3 B 4 ) = ( A 1 B 1 + A 2 B 3 A 1 B 2 + A 2 B 4 A 3 B 1 + A 4 B 3 A 3 B 2 + A 4 B 4 ) \left( \begin{array}{l} {A_{1}} & {A_{2}} \\ {A_{3}} & {A_{4}} \end{array} \right) \left( \begin{array}{l} {B_{1}} & {B_{2}} \\ {B_{3}} & {B_{4}} \end{array} \right)=\left( \begin{array}{ll} {A_{1}B_{1}+A_{2}B_{3}} & {A_{1}B_{2}+A_{2}B_{4}} \\ {A_{3}B_{1}+A_{4}B_{3}} & {A_{3}B_{2}+A_{4}B_{4}} \end{array}\right) (A1A3A2A4)(B1B3B2B4)=(A1B1+A2B3A3B1+A4B3A1B2+A2B4A3B2+A4B4)

8.1.4、对角型分块矩阵乘法

A B = ( A 1 B 1 A 2 B 2 ⋱ A k B k ) AB=\left(\begin{array}{cccc} {A_1B_1} \\ {} & {A_2B_2} \\ {} & {} & {\ddots} \\ {} & {} & {} & {A_kB_k} \end{array}\right) AB=A1B1A2B2AkBk

8.1.5、对角型分块矩阵加法

A B = ( A 1 + B 1 A 2 + B 2 ⋱ A k + B k ) AB=\left(\begin{array}{cccc} {A_1+B_1} \\ {} & {A_2+B_2} \\ {} & {} & {\ddots} \\ {} & {} & {} & {A_k+B_k} \end{array}\right) AB=A1+B1A2+B2Ak+Bk

8.1.6、转置

设 A = ( A 11 ⋯ A 1 r ⋮ ⋮ A s 1 ⋯ A s r ) ,则 A T = ( A 11 T ⋯ A s 1 T ⋮ ⋮ A 1 r T ⋯ A w T ) \text {设}A=\left(\begin{array}{ccc}{A_{11}} & {\cdots} & {A_{1 r}} \\ {\vdots} & {} & {\vdots} \\ {A_{s 1}} & {\cdots} & {A_{s r}}\end{array}\right) \text {,则} A^{T}=\left(\begin{array}{ccc}{A_{11}^{T}} & {\cdots} & {A_{s 1}^{T}} \\ {\vdots} & {} & {\vdots} \\ {A_{1 r}^{T}} & {\cdots} & {A_{w}^{T}}\end{array}\right) A=A11As1A1rAsr,则AT=A11TA1rTAs1TAwT

8.1.7、逆矩阵

设A为n阶方阵,若A的分块矩阵只有在对角线上有非零子块,其余子块都为零矩阵,且在对角线上的子块都是方阵
A = ( A 1 O A 2 ⋱ O A s ) A=\left(\begin{array}{cccc}{A_{1}} & {} & {} & {O} \\ {} & {A_{2}} & {} & {} \\ {} & {} & {\ddots} & {} \\ {O} & {} & {} & {A_{s}}\end{array}\right) A=A1OA2OAs
若A可逆,其逆矩阵为:
A − 1 = ( A 1 − 1 O A 2 − 1 ⋱ O A s − 1 ) A^{-1}=\left(\begin{array}{cccc}{A_{1}^{-1}} & {} & {} & {O} \\ {} & {A_{2}^{-1}} & {} \\ {} & {} & {\ddots} \\ {O} & {} & {} & {A_{s}^{-1}}\end{array}\right) A1=A11OA21OAs1

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值