向量、矩阵乘法的几何意义(一) scalar multiplication VS scalar product

1scalar multiplication   纯量乘法

1)定义:

纯量乘法是指一个标量r与一个向量V(或矩阵M)相乘,其结果为一个向量(矩阵),该向量(矩阵)的每一个元素为标量rVM)中对应位置元素的乘积。

2)几何意义:

       Scaling:对向量(矩阵)各维上的伸(stretch, r>1)缩(shrink, 0<r<1)。Scalar multiplication is a way to change the size of a configuration of points by stretching or shrinking them on all dimensions.

 

2scalar product (dot product, inner product)  数积、标量积、内积

(1)       定义:两个向量的内积的结果是一个标量,其定义如下

                                     1

                                                                                                2

(2)       几何意义:

Projection:如图1所示,两个向量的内积可以看做是其中一个向量(看成向量空间中的一个点)向另一个向量(看成向量空间中的一条有向线段,directed line segment)的投影,投影的距离长度为内积的值。

还有一种说法是向量a在向量b上的投影是

                                                                            3

1 两向量内积的几何解释

参考资料:

Analyzing Multivariate Data

http://en.wikipedia.org/wiki/Scalar_multiplication

http://www.purplemath.com/modules/mtrxmult.htm

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值