机器学习
MichaelToLearn
这个作者很懒,什么都没留下…
展开
-
inplace-abn 报错解决: ImportError: libcudart.so.9.0: cannot open shared object file: No such file or dir
inplace-abn 报错解决报错信息如下:Traceback (most recent call last): File "train.py", line 14, in <module> from unet import UNet File "/data3/yuechen/new/pytorch_unet/unet/__init__.py", line 1, in <module> from .unet_model import UNet File原创 2020-12-04 21:38:24 · 6039 阅读 · 8 评论 -
秋招斩获所有互联网大厂面经之算法
背熟,唯手熟尔,大家都这么厉害,只能记得更准才行。文章目录算法岗分类面经答案问项目机器学习1、softmax 反向传播的公式,需要手写2、softmax 层节点过多的话有什么办法可以解决3、kmeans 的原理4、kmeans 为什么一定会收敛5、CART了解吗?怎么做回归和分类的?6、huber函数了解吗?和l1、l2比起来优势是啥?8、机器学习中一般怎么衡量模型效果?auc值怎么理解?9、怎么衡量两个分布的差异?KL散度和交叉熵损失有什么不同?关系是啥?10、怎么理解最大似然估计?11、逻辑斯蒂回.原创 2020-11-07 21:20:54 · 1290 阅读 · 2 评论 -
Windows10下PyTorch 怎么也没法import成功,重装了多次cuda驱动,各种版本也不行,更改这个脚本就成功了
我尝试了cuda9.2/10.1/10.2,但是最后无一例外都是提示DLL错误,无法import,最终翻阅外网的一个github,终于找到了解决方案,特记录一下:方法是替换pytorch 的__init__.py文件,该文件的地址为:https://gist.github.com/peterjc123/bcbf4418ff63d88e11313d308cf1b427找到自己的环境下面的torch文件夹,然后用下面的内容替换其__init__.py。为了防止内容失效,贴文件内容如下:r"""Th原创 2020-07-21 13:57:49 · 4178 阅读 · 6 评论 -
很大batch size的缺点
很大batch size的缺点1、很大batch size的优点:允许更大的学习率更快的收敛极限情况是,整个数据集作为一个batch,更新应该是全局最优的,这时候就不是随机梯度下降了,就是梯度下降。在这里我们要知道,为什么需要随机梯度下降,因为训练数据太多了,参数更新太慢,因此我们在这里直接就图省事了,随机取几个数据更新参数,这样就能够2、很大batch size缺点:ba...原创 2019-10-29 14:02:59 · 4102 阅读 · 0 评论 -
使用`pytables`的时候,出现找不到`DLL`的错误,导致程序意外退出。
问题表现使用pytables的时候,出现找不到DLL的错误,导致程序意外退出。下面的错误import tablesTraceback (most recent call last): File "<input>", line 1, in <module> File "C:\Program Files\JetBrains\PyCharm 2019.2.2\he...原创 2019-10-12 21:29:13 · 478 阅读 · 0 评论 -
numpy 中出现shape为0,处理h5数据时的shape为0是什么意思?
numpy 中出现shape为0,处理h5数据时的shape为0是什么意思?研究3D-CNN-UNET的数据读取时,遇到了下面的代码:data_storage = hdf5_file.create_earray(hdf5_file.root, 'data', tables.Float32Atom(), shape=data_shape, ...原创 2019-10-12 20:22:46 · 3772 阅读 · 0 评论 -
reorder_img函数的作用是什么?
image原来的情况是:<class 'nibabel.nifti1.Nifti1Image'>data shape (134, 35, 152)affine: [[ 0.390625 0. 0. -45.4126606 ] [ 0. 1.99999988 0. -35.06213651]...原创 2019-10-12 16:36:40 · 350 阅读 · 0 评论 -
为什么卷积层输出的特征图数目等于卷积核的数量?
为什么卷积层输出的特征图数目等于卷积核的数量?还是要祭出下面这张图:刚开始不是很理解,为什么卷积层输出的特征图数目一定等于卷积核的数量,与输入层的通道数没有关系吗?答案就是没有关系,因为无论你输入有多少个通道,卷积核的通道数和输入的一一匹配。比方说上图中,输入图片有3个通道,卷积核的数量有两个:W1W_1W1和W2W_2W2,每个WWW都有三个通道与输入通道一一对应,每个卷积核计算出...原创 2019-10-12 00:05:29 · 9096 阅读 · 6 评论 -
【图解】神经网络各种层的输入输出尺寸计算
【图解】神经网络各种层的输入输出尺寸计算看到网上有很多计算神经网络各种层的输入输出尺寸的公式,但是往往只是直接给出公式,并没有教给我们如何得到这种公式的,自己学习的时候,做一下记录以及图解卷积层首先给出公式,这里肯定假设输入图像是等宽高的,用到的字母如下:字母名称含义III输入图片的大小为 I×II\times II×IKKK卷积核的大小为K×KK\times...原创 2019-10-11 23:50:36 · 4461 阅读 · 1 评论 -
pycharm调试模式中如何将ndarray二维矩阵变成图片查看
pycharm调试模式中如何将ndarray二维矩阵变成图片查看1、调试窗口中,右键,选择Evaluate Expression。2、输入下面的代码,其中transpose操作是为了转换图片的shape(pytorch中需要,其他不需要),反正只要把矩阵转换成HxWxC的样式就行了,比方说可以是500x500x500,而不能是3x500x500我这里需要查看的是t[0]这个变量:impor...原创 2019-09-19 00:23:35 · 7005 阅读 · 8 评论 -
DeepFashion2: 一个针对衣服图片的检测、姿态估计、分割和重认证多用途基准
DeepFashion2: 一个针对衣服图片的检测、姿态估计、分割和重认证多用途基准DeepFashion2: A Versatile Benchmark for Detection, Pose Estimation, Segmentation and Re-Identification of Clothing Images摘要【背景】有丰富标记的基准(如DeepFashion)在理解时尚图...原创 2019-09-18 15:13:56 · 4668 阅读 · 0 评论 -
对于one-shot医学图像分割使用学习变换的数据增强
对于one-shot医学图像分割使用学习变换的数据增强Data augmentation using learned transformations for one-shot medical image segmentation文章目录对于one-shot医学图像分割使用学习变换的数据增强摘要引言相关工作网络模型结论首先解释一下什么是one-shot,样本标记只有一个或者很少,且样本又有变动...原创 2019-09-18 00:37:50 · 1772 阅读 · 1 评论 -
弱监督联合检测和分割的周期指引
弱监督联合检测和分割的周期指引Cyclic Guidance for Weakly Supervised Joint Detection and Segmentation文章目录弱监督联合检测和分割的周期指引摘要引言深度学习弱监督学习语义分割+目标检测本文工作相关工作弱监督目标检测方法试验结论摘要【背景】诸如目标检测和语义分割这种需要图像标记的任务,弱监督学习由于在标记方面的显著节省,...原创 2019-09-18 00:05:21 · 831 阅读 · 1 评论 -
卷积神经网络笔记
来源:卷积神经网络笔记目录:文章目录卷积神经网络笔记结构概述用来构建卷积神经网络的各种层卷积层卷积层在算什么输入滤波器每个滤波器对应一个深度局部连接空间排列深度步长零填充参数共享Numpy例子性质总结用矩阵乘法实现汇聚层公式常用形式最大汇聚普通汇聚(General Pooling)不适用汇聚层归一化层全连接层全连接层与成卷积层区别两种变换全连接层转化为卷积层卷积神经网络的结构三种结构层的排列...原创 2018-10-09 23:40:21 · 260 阅读 · 0 评论 -
cifar-10 数据集说明及下载
文章目录cifar-10 数据集说明及下载数据集组成下载使用权威结果数据的结构cifar-10 数据集说明及下载数据集组成本数据及包含了6万张分辨率为32x32的图片,一共分为了10类,分别为:飞机汽车鸟猫鹿狗青蛙马船货车其中,5万张作为训练集,1万张作为测试机。训练集被分为了5批训练和1批测试。每一批都是1万张。测试集是从每一种分类中随机抽取出来1000张...原创 2018-10-05 22:11:13 · 18144 阅读 · 1 评论