对于one-shot医学图像分割使用学习变换的数据增强

对于one-shot医学图像分割使用学习变换的数据增强

Data augmentation using learned transformations for one-shot medical image segmentation


首先解释一下什么是 one-shot,样本标记只有一个或者很少,且样本又有变动性的问题。解决这种问题,让模型不输出分类,而是去学习 相似度函数

摘要

【背景】图像分割在很多医疗应用中是一个非常重要的任务。基于卷积神经网络的方法取得了最先进的准确率。然而,它们通常依赖着有大量标记数据集的监督训练。医学图像打标需要显著的专业知识和事件,典型的手工调教的数据增强方法未能不好做这种图片的复杂变化。

【本文工作】我们提出了一种针对合成标记医学图像自动化的数据增强方法。我们在磁共振成像脑区扫描分割上论证了我们的方法。我们的方法仅仅需要单个的扫描件,通过半监督方法使用其他未标记扫描件的信息。我们从这额图片上学到了一个变换模型,并使用这个模型和标记的图片合成了另外的标记样本。每一个变换包含了一个空间变换昌和一个强度变化,使合成复杂效果成为可能,比如解剖学和图像获取流程中的变化。

【结果】我们表明,使用这些新样本训练的分割器在生物医学图像分割的一眼模仿学习中,比最先进的方法提供了显著的改善。

引言

语义分割非常重要,有标记的时候监督学习最好,医学数据往往有限,而且图片变化大。

传统的数据增强:缩放、旋转、随机非线性变换,但是能力有限。

解决方案:学习去合成真实样本。

相关工作

不写了

网络模型

image-20190918003550599

类似于3D-UNet

image-20190918003619304

结论

我们展示了一个基于学习的数据增强方法,并在医学图像分割的一眼模仿学习中进行了论证。

我们从一个标记图片和一系列未标记的样本开始。使用基于学习的配准方法,我们对标记和未标记的样本之间的一系列空间和外表变换进行了建模。这些变换不好做了诸如图片强度的非线性变形、变化效果。我们通过采样变换合成了新的标记样本,并将其应用到标记的样本中,产生了真实的新图片的广泛变化。

我们是用这些合成的图片训练了一个监督分割模型。在我们数据集的每一个养病呢上,这个分割器比现存的一眼模仿学习分割方法都表现更好,接近了全监督模型的性能。该框架使得很多应用中的分割成为可能,比如临床设置中,时间紧迫且只有很少的一些扫描件的人工标记。总的来说,我们的工作表明:

1、从未标记的图片中学习一个独立的空间、外表变换模型使合成广泛、真实的标记图片成为可能。

2、这些合成的图片可以用来训练分割模型,在一眼模仿学习方案中比现存方法表现更好。

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MichaelToLearn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值