
贝叶斯推理与机器学习
文章平均质量分 81
ziix
Leibniz
展开
-
Bayesian Methods for Hackers Probabilistic Programming and Bayesian Inference pdf 分割并google翻译
Bayesian Methods for Hackers Probabilistic Programming and Bayesian Inference pdf翻译完 pdf split pdfsam 分割后可以用 google翻译, 翻译效果更好 (google翻译的坏处是 翻译后目录丢失): google翻译文档 翻译效果原创 2022-04-03 10:46:11 · 325 阅读 · 0 评论 -
张志华 统计机器学习
本节贝叶斯线性回归推到主要是根据 张志华 统计机器学习 p39课来的。但是其课中大部分概率p省略了X,最初的时候不知道这一点,(这一点可以看Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf的书中有提到)所以本节的推导实际上有些问题。所以贴出一个无问题的纸质推导(暂时没时间整理成电子的):无问题的纸质贝叶斯线性回归推导: (完全不省略X)yixiTbϵiyi∈RxiT∈RpD。原创 2022-03-26 22:41:00 · 1465 阅读 · 0 评论 -
机器学习能力自测题—看看你的机器学习知识能打几分?不容错过的机器学习试题与术语
机器学习能力自测题—看看你的机器学习知识能打几分?不容错过的机器学习试题与术语原创 2021-12-03 14:54:30 · 3164 阅读 · 0 评论 -
机器自我编程—用”递归” 提高神经编程解释器(NPI)的泛化能力
2017年最佳论文, 伯克利改进2016年 DeepMind 突破性论文: NPI (神经编程解释器). 论文题为: MAKING NEURAL PROGRAMMING ARCHITECTURES GENERALIZE VIA RECURSION 能够让机器自己具有推理能力和编程能力一直是人们梦想, 而如今, 即使深度学习和神经网络发展壮大, 我们在这一领域依然是”婴儿学步”. 去年DeepMind的论文NEURAL PROGRAMMER-INTERPRETERS (NPI) 又似乎让我们看到了曙光..原创 2021-12-10 18:32:11 · 562 阅读 · 0 评论 -
卡内基梅隆大学(CMU),那些经受住时间考验的机器学习论文–第二弹:动态主题模型
这次,我们要解释一种典型的机器学习算法——动态主题模型(Dynamic Topic Model)。 概率主题模型和概率图模型是每个做文本挖掘的学者的必学课题。其中最常见的主题模型是隐含狄利克雷分布(LDA)。当然,本文的动态主题模型也是主题模型的一种,不过为了方便理解,我们还是来回顾一下LDA。 来自:https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation 我们定义: α 是狄利克雷先验的参数,是每个文档可能的主题分布。 ..原创 2021-12-10 18:54:25 · 1094 阅读 · 0 评论