
神经网络
文章平均质量分 52
ziix
Leibniz
展开
-
机器学习能力自测题—看看你的机器学习知识能打几分?不容错过的机器学习试题与术语
机器学习能力自测题—看看你的机器学习知识能打几分?不容错过的机器学习试题与术语原创 2021-12-03 14:54:30 · 3164 阅读 · 0 评论 -
机器自我编程—用”递归” 提高神经编程解释器(NPI)的泛化能力
2017年最佳论文, 伯克利改进2016年 DeepMind 突破性论文: NPI (神经编程解释器). 论文题为: MAKING NEURAL PROGRAMMING ARCHITECTURES GENERALIZE VIA RECURSION能够让机器自己具有推理能力和编程能力一直是人们梦想, 而如今, 即使深度学习和神经网络发展壮大, 我们在这一领域依然是”婴儿学步”. 去年DeepMind的论文NEURAL PROGRAMMER-INTERPRETERS (NPI) 又似乎让我们看到了曙光..原创 2021-12-10 18:32:11 · 562 阅读 · 0 评论 -
Stanford教授Daphne Koller 概率图模型 — 终极入门 第一讲 有向图模型与贝叶斯网络基础
图模型或者概率图模型(Probabilistic Graphical Model), 是每个机器学习领域数据科学家的必备工具. 今天的终极入门我们讲解斯坦福教授Daphne Koller 概率图模型在coursera上的教程. 简洁地把要点拿出来分享给大家.概率图模型可以是有向无环图 或者无向图概率图模型是用图来表示变量概率依赖关系的理论。因为概率的依赖关系可以是单向的, 也可以是双向的, 所以概率图模型可以是有向无环图(如贝叶斯网络), 也可以是双向的有环图(如马尔可夫网络) .概..原创 2021-12-10 18:37:25 · 1146 阅读 · 0 评论 -
卡内基梅隆大学(CMU),那些经受住时间考验的机器学习论文–第二弹:动态主题模型
这次,我们要解释一种典型的机器学习算法——动态主题模型(Dynamic Topic Model)。概率主题模型和概率图模型是每个做文本挖掘的学者的必学课题。其中最常见的主题模型是隐含狄利克雷分布(LDA)。当然,本文的动态主题模型也是主题模型的一种,不过为了方便理解,我们还是来回顾一下LDA。来自:https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation我们定义:α 是狄利克雷先验的参数,是每个文档可能的主题分布。..原创 2021-12-10 18:54:25 · 1094 阅读 · 0 评论 -
基于 矩阵分解 做 用户_商品
基于 非负矩阵分解、奇异值分解 的 主题模型问题开始学习NLP,主题模型 是一个有趣 的 路。 我们将用 两个主流的 矩阵分解计数。一个 单词-文档 矩阵 如下: (译者:这里给的图是 文档-单词 矩阵,原图意思不清楚,没使用)文档-词 矩阵 可以分解 为 一个 高瘦 矩阵 乘 一个 宽短 矩阵 (或许 中间有一个 对角矩阵)。注意 文旦-词 矩阵 丢失了 单词顺序 或 句子结构。这是 词袋 方法 的 例子。隐变量语义分析(LSA, Latent Semantic Anal原创 2021-03-10 17:15:58 · 130 阅读 · 0 评论 -
deep dream
deep deam pytorch demo原创 2021-03-09 12:08:07 · 159 阅读 · 0 评论 -
Transformer QKV attention
QKV attentionQKV attention原创 2021-03-05 17:37:16 · 1236 阅读 · 0 评论 -
logistic-regression 2分类
logstic-regression-2-classification原创 2021-03-02 11:50:37 · 156 阅读 · 0 评论 -
Hierarchical temporal memory
原文文章目录1 多级临时记忆 概要- 多级临时记忆 原理- 分层- 区- 稀疏分布表示- 时间角色- 学习- 推理- 预测- 预测 是 连续的。- 预测 出现 在 该hierarchy 的 每个 层 的 每个 区。- 预测 是 上下文 敏感的。- 预测 导致 稳定- 一个 预测 告诉 我们,是否 一个 新 输入 是 期待的 或 非 期待的- 预测 帮助 使 该 系统 更 健壮,对 噪音- 行为-...原创 2019-12-31 10:13:46 · 778 阅读 · 0 评论 -
neural_network_with_1_hidden_layer direct fomula
标题direct6formular原创 2019-08-07 10:49:13 · 4502 阅读 · 0 评论 -
build_ann_mnist_1_hidden_layer 构建1隐层人工神经网络
%load_ext ipython_autoimportfrom sklearn.datasets import fetch_openmlmnist = fetch_openml('mnist_784')#make fetch_openml load from local file:# cp -rv ./openml ~/scikit_learn_data/mldata/impo...原创 2019-08-13 20:35:21 · 361 阅读 · 0 评论 -
神经网络草稿
原创 2019-07-29 11:58:48 · 132 阅读 · 0 评论