方程组的解法
For equation set
若矩阵A满秩,则:
1. If A is a square matrix and has
A−1
, (正定):
X=A−1P
.
2. If A is not a square matrix,使用广义逆矩阵.
A超定,
X=(ATA)−1ATP
;
A欠定(大多数情况下),
X=AT(AAT)−1P
.
A欠定:在图像重建中,意味着 投影线个数 < 图像像素数。在高分辨率下是很容易出现的情况,这也是迭代重建需要提供其他约束的原因。
若矩阵A不满秩,不是方阵,方程组不相容,则:
不满秩:各条投影线可能相关,比如:0度和180度的投影线为同一条,当然相关了;
不是方阵:投影线个数 != 图像像素数,这也是很容易理解的;
不相容:系数矩阵的秩 < 扩展矩阵的秩,这在投影数据含噪声的情况下几乎是必然的。
使用奇异值分解SVD寻找广义解。
Am×n=Um×mΣVTn×n
VTV=In×n
UTU=Im×m
Σm×n=[diag{σi}000]
广义逆矩阵为:
A+=VΣ+UT
其中,
Σ+m×n=[Dr000]
Dr=diag{1σ1,1σ2,...,1σr,0,...,0}
X=A+P=VΣ+UTP