齐次递归方程的解法
a0tn+a1tn−1+...+aktn−k=0
齐次递归方程
let
tn=xn
p(x)=a0xk+a1xk−1+...+ak=0
特征多项式
- 如果 p(x) 有k个单根,则 t(n)=Σki=1cirni
- 如果r是m重根,则 tn=rn,nrn,n2rn,...,
a0tn+a1tn−1+...+aktn−k=0
齐次递归方程
let
tn=xn
p(x)=a0xk+a1xk−1+...+ak=0
特征多项式