- 博客(290)
- 资源 (6)
- 收藏
- 关注
原创 ESDA in PySal (3):Geosilhouettes:集群拟合的地理测量
是观测值与给定聚类的拟合优度的非参数度量。在聚类具有“地理”解释的情况下,例如当它们代表地理区域时,轮廓统计可以结合“空间思维”,以便提供更有用的聚类拟合度量。。这两项新措施共同提供了测量地理数据科学中聚类问题中聚类拟合优度的新方法。下面,我们将深入探讨这些是如何在“esda”包中实现的。首先,让我们设置一些数据。我们将考虑单个单变量数据集,即 1989 年美国南部腹地各县的基尼指数。最后,出于绘图目的,让我们获取底图。
2023-09-17 22:09:42
79
原创 ESDA in PySal (2) localjoincounts
PySAL有5种全局自相关检验:Gamma值、Join Count、Moran’s I、Geary’s C、和Getis and Ord’s G在下面的笔记本中,我们回顾了提出的不同类型的本地连接计数(LJC)。LJC 关注采用二进制值(例如 0 或 1)的空间现象,例如美国大选的获胜与失败,。这套探索性统计数据对于想要关注 Anselin 和 Li 所说的“协同定位”不同类型的分析师来说特别有用。即是否存在特定的 0 或 1 值。下面提供了每个统计数据的用例及其在 PySAL 中的实现。
2023-08-29 16:57:26
204
原创 ESDA in PySal (1) 利用 A-DBSCAN 聚类点并探索边界模糊性
在本例中,我们将以柏林的 AirBnb 房源样本为例,说明如何使用 A-DBSCAN (
2023-08-29 16:41:02
620
原创 Kaggle(3):Predict CO2 Emissions in Rwanda
在本次竞赛中,我们的任务是预测非洲 497 个不同地点 2022 年的二氧化碳排放量。在训练数据中,我们有 2019-2021 年的二氧化碳排放量1.通过平滑消除2020年一次性的新冠疫情趋势。或者,用 2019 年和 2021 年的平均值来估算 2020 年也是一种有效的方法,但此处未实施2.3. 以 2019 年和 2020 年为训练数据,用一些集成模型进行实验,以测试其在 2021 年数据上的 CV。
2023-08-26 00:50:24
114
原创 Kaggle (2) :Bike Sharing Demand 共享单车需求预测
采用xgboost+random forest,虽然包括random forest在内的模型在cross validation上表现很不错,但实际上还是存在过拟合,且使用随机交换特征等数据增强的效果也不怎么好。可以发现,在工作日中的高峰期是早上8点和下午17点、18点;可见注册用户具有和【工作日中的时间-使用量】相似的使用曲线;而非注册用户则具有和【非工作日中的时间-使用量】相似的使用曲线。进一步分析可以发现,和注册用户相比,非注册用户更倾向于在非工作日中使用自行车。可见工作日和非工作日有明显的差距;
2023-07-28 21:08:22
199
原创 Geocomputation (7)Geographic data I/O
本章介绍地理数据的读写。地理数据导入对于地理计算至关重要:没有数据,现实世界的应用程序就不可能实现。数据输出也至关重要,使其他人能够使用您工作中产生的有价值的新数据集或改进的数据集。总的来说,这些导入/输出过程可以称为数据I/O。地理数据 I/O 通常在项目开始和结束时只需几行代码即可完成。它作为一个简单的一步过程经常被忽视。
2023-07-07 01:22:04
80
原创 Geocomputation (6)Reprojecting geographic data
sec-coordinate-reference-systems 引入了坐标参考系统(CRS),重点关注两种主要类型:地理(“经度/纬度”,单位为经度和纬度)和投影(通常以米为单位) 基准)坐标系。本章以这些知识为基础并进行了更深入的探讨。它演示了如何设置地理数据并将其从一种 CRS 转换为另一种 CRS,此外,还强调了您应该注意的由于忽略 CRS 而可能出现的特定问题,特别是当您的数据使用经度/纬度坐标存储时。在许多项目中,无需担心不同的 CRS,更不用说在不同的 CRS 之间进行转换。
2023-06-29 15:57:13
110
原创 Geocomputation (5)raster vector
许多地理数据项目涉及集成来自许多不同来源的数据,例如遥感图像(栅格)和行政边界(矢量)。输入栅格数据集的范围通常大于感兴趣区域。在这种情况下,栅格裁剪和屏蔽对于统一输入数据的空间范围非常有用。这两种操作都减少了对象内存的使用和后续分析步骤的相关计算资源,并且可能是创建涉及栅格数据的有吸引力的地图之前必要的预处理步骤。代表犹他州西南部海拔(海拔米)的“srtm.tif”栅格代表锡安国家公园的zion.gpkg矢量图层目标对象和裁剪对象必须具有相同的投影。
2023-06-25 18:26:27
298
原创 Geocomputation (4)geometry operations
到目前为止,本书已经解释了地理数据集的结构(第 2 章),以及如何根据其非地理属性(第 3 章)和空间关系(第 4 章)来操作它们。本章重点介绍如何操作地理对象的地理元素,例如简化和转换矢量几何、裁剪栅格数据集以及将矢量对象转换为栅格以及将栅格转换为矢量。阅读完它并尝试最后的练习后,您应该理解并控制 sf 对象中的几何列以及栅格中表示的像素相对于其他地理对象的范围和地理位置。@sec-geo-vec 涵盖了使用“一元”和“二元”运算转换矢量几何形状。
2023-06-23 17:06:01
199
原创 Geocomputation (3)Spatial data operations
空间子集化是获取空间对象并返回仅包含与另一个对象在空间中相关的特征的新对象的过程。类似于属性子集(在 @sec-vector-attribute-subsetting 中介绍),可以使用方括号(“[”)运算符使用语法“x[y]”创建“GeoDataFrame”的子集,其中“x”是 一个“GeoDataFrame”,将从中返回行/特征的子集,“y”是“子集对象”。
2023-06-23 00:37:52
326
原创 Geocomputation (2)Attribute data operations
例如,我们希望将“continent”和“region_un”列合并到名为“con_reg”的新列中,使用“:”作为分隔符。例如,伦敦的 Elephant & Castle / New Kent Road 停靠点的坐标为经度“-0.098”和纬度“51.495”,在@中描述的简单特征表示中可以表示为“POINT (-0.098 51.495)” sec-空间类。中介“idx_small”(代表小国家的索引的缩写)是一个布尔值“Series”,可用于按表面积划分世界上七个最小国家的子集。
2023-06-21 01:10:13
1426
原创 Geocomputation (1)Geographic data in Python
正如我们将在本章后面的示例代码中看到的那样,和GeoSeries生态系统提供了一种在 Python 中处理矢量图层的综合方法,许多包都基于它构建。然而,栅格数据的情况并非如此:有几个部分重叠的包用于处理栅格数据,每个包都有自己的优点和缺点。numpydict另一个值得一提的与栅格相关的包是。它是用于处理带标签数组的通用包,因此有利于处理“复杂”栅格格式(例如 NetCDF),使用其自己的本机类表示栅格,即和本章将简要介绍基本的地理数据模型:矢量和栅格。
2023-06-20 09:00:00
161
原创 基于距离的平面点模式统计方法(pysal.pointpats doc)
在这个例子中,我们将生成一个点模式作为“观察到的”点模式。通过将观察到的点模式的距离函数与来自 CSR 过程的点模式的距离函数进行比较,我们能够推断观察到的点模式的潜在空间过程是否为给定置信度的 CSR。,因为它测量从“空白空间”中的随机点到点模式中“填充”点的距离。这些随机点的数量决定了我们对观察到的点模式的测量的“细粒度”程度。同样,我们可以看到包络通常高于观察到的函数,这意味着我们的点模式是分散的。点过程的最近邻距离分布函数(包括最近的“事件到事件”和“点到事件”距离分布函数)是几种累积分布函数——
2023-06-15 16:36:12
625
原创 leetcode python刷题记录(十二)(111~120)
给定一个二叉树,找出其最小深度。最小深度是从根节点到最近叶子节点的最短路径上的节点数量。**说明:**叶子节点是指没有子节点的节点。[0, 10^5]
2023-05-15 00:43:06
88
转载 [转]核密度估计与自适应带宽的核密度估计
在很多情况下,我们对样本的分布并没有充分的了解,无法事先给出密度函数的形式,而且有些样本分布的情况也很难用简单的函数来描述。另外,带宽应与兴趣点的离散程度呈正相关,对于稀疏型的兴趣点分布应采用较大的带宽,而对于密集型的兴趣点则应考虑较小一些的带宽。如果带宽不是固定的,而是根据样本的位置而变化(其变化取决于估计的位置(balloon estimator)或样本点(逐点估计pointwise estimator)),则会产生一种特别有力的方法,称为。时,自适应带宽的核密度估计就变成了固定带宽的核密度估计了。
2023-04-17 18:46:57
445
原创 leetcode python刷题记录(十)(91~100)
读于一棵二叉搜索树来说,一个重要的性质就是它的中序遍历为升序,中序遍历的过程为左 -> 根 -> 右,如果给每个结点标记上编号,意思就是说所有左子树节点的编号一定小于根节点,所有右子树的结点编号大于根节点。
2023-04-14 13:00:29
187
原创 铁路轨道不平顺数据分析与预测
铁路轨道作为铁行车的基础设施,是铁路线路的重要组成部分。随着经济和交通运输业的发展,我国的铁路运输正朝着高速和重载方向迅速发展,与此同时,轨道结构承受来自列车荷载、运行速度的冲击和列车的振动等各方面的作用力不断增大,不仅加速了铁路轨道设备的损坏,由此产生的轨道不平顺问题会严重影响车辆行,乘客的舒适度以及设备的使用寿命等,存在非常严重的安全隐患。在铁路运营过程中,轨道在列车不稳定荷载的反复作用下容易发生一定的几何形变,这其中有些是垂直向和横向的动态弹性变形,有些则是永久变形,而这些现象都统称为轨道不平顺。
2023-04-06 01:02:21
1235
1
原创 Geospatial Data Science (10): Individual mobility
一个分析移动数据scikit-mobility 提供了两个用户友好的数据结构,它们扩展了pandasDataFrame。
2023-04-05 22:50:31
308
原创 Geospatial Data Science (9): Spatial networks
它具有将点捕捉到网络并分析受限于网络的点模式的工具,这对于提出诸如“街道网络上的酒吧/药店*如何聚集?如果不是东北部的那两家药房紧挨着,它们的观察曲线将位于近距离模拟包络线的最低端,表明它们在近距离上相当分散。Ripley 的 K 函数采用点模式并考虑最近邻居的所有成对距离,以确定在划定的距离范围内是否存在聚类:https://en.wikipedia.org/wiki/Spatial_descriptive_statistics#Ripley’s_K_and_L_functions。
2023-03-23 22:39:02
363
原创 Geospatial Data Science (8): OpenStreetMap and OSMnx
使用自定义过滤器来微调您的网络。OSMnx 使用预设来查询允许步行、骑自行车、驾车等的街道。您可以通过传递来覆盖它,以在图表中指定您想要的特定 OSM 方式。place = {11 primary要下载整个国家/地区的道路网络,您通常需要将查询限制为仅限高速公路之类的内容,以适应您计算机的 RAM。对于大型查询,例如整个比利时,OSMnx 会将您的查询细分为多个服务器请求以下载所有数据,然后组合图。
2023-03-22 21:36:52
572
原创 Geospatial Data Science(7): Point pattern analysis
点是空间实体,可以用两种根本不同的方式来理解。一方面,点可以看作是空间中的固定对象,也就是说它们的位置是给定的(外生在这种情况下,点的分析与其他类型的空间数据(如多边形和线)的分析非常相似。另一方面,点可以看作是事件的发生,理论上可以在任何地方发生,但只在特定位置出现。这是我们将在笔记本的其余部分采用的方法。当点被视为可能发生在多个位置但只发生在其中几个位置的事件时,此类事件的集合称为点模式。在这种情况下,点的位置是分析兴趣的关键方面之一。
2023-03-10 20:50:19
915
原创 Geospatial Data Science (6): Spatial clustering
与ESDA技术一样,区域化方法也需要一个便于统计的正式空间表示。在实践中,这意味着我们将需要为要汇总的地区创建一个空间权重矩阵。从技术上讲,这与我们之前看到的过程相同,这要归功于PySAL。在这种情况下,不同的是,我们不是从shapefile开始,而是从GeoJSON开始。幸运的是,PySAL支持 "即时"构建空间权重矩阵,也就是从一个表格开始。这是一个单行本。
2023-03-05 11:27:47
1247
原创 Geospatial Data Science (5): Spatial autocorrelation
空间自相关与数据集中观察值的相似性与这些观察值的位置的相似性的程度有关。与传统的两个变量之间的相关关系(告知我们一个变量的值如何作为另一个变量的函数而变化)以及与它的时间序列对应物(将一个变量在某一特定时间点的值与以前的值联系起来)不完全一样,空间自相关将感兴趣的变量在一个特定地点的值与同一变量在周围地点的值联系起来。这方面的一个关键概念是空间随机性:在这种情况下,观察的位置没有提供关于其价值的任何信息。换句话说,如果一个变量在空间上的分布没有明显的模式,那么它就是空间随机的。
2023-03-04 11:17:33
1195
原创 leetcode python刷题记录(八)(71~80)
给你一个字符串path,表示指向某一文件或目录的 Unix 风格(以'/'开头),请你将其转化为更加简洁的规范路径。在 Unix 风格的文件系统中,一个点()表示当前目录本身;此外,两个点 (..) 表示将目录切换到上一级(指向父目录);两者都可以是复杂相对路径的组成部分。任意多个连续的斜杠(即,'//')都被视为单个斜杠'/'。对于此问题,任何其他格式的点(例如,'...')均被视为文件/目录名称。请注意,返回的'/''/''/''.''..'返回简化后得到的。
2023-03-02 21:36:59
64
原创 Geospatial Data Science (4): Spatial weights
在本节中,我们将学习空间分析中关键部分之一的来龙去脉:空间权重矩阵。这些是结构化的数字集,用于形式化数据集中观测值之间的地理关系。本质上,给定地理的空间权重矩阵是维度N乘以N的正定矩阵,其中NW0w21⋮wN1w12⋱wjiwij0w1N⋮⋮0其中,每个像元wij包含一个值,该值表示观测值i和j之间的空间接触或交互程度。在这种情况下,一个基本概念是邻居和邻里。按照惯例,对角线 (wii。
2023-02-25 15:10:49
396
原创 Geospatial Data Science(3): Choropleth Mapping
在本节中,我们将以迄今为止所学到的有关加载和操作(空间)数据的所有知识为基础,并将其应用于最常用的空间分析形式之一:choropleths。请记住,这些地图显示以配色方案(也称为palette)编码的变量的空间分布。在进入代码之前,让我们了解一下不同的分类方案: https://mgimond.github.io/Spatial/symbolizing-features.html#an-interactive-example。
2023-02-22 15:14:39
70
原创 Geospatial Data Science (2) :Geospatial Data in Python
有各种不同的 GIS 数据格式可用,例如ShapefileGeoJSONKML, 和GPKGGeopandas能够从所有这些格式(以及更多格式)读取数据,它将数据分析库pandas的功能与其他软件包(如shapely和fiona相结合,用于管理空间数据。Geopandas中的主要数据结构是GeoSeries和,它们扩展了pandas的Series和DataFrames功能。这意味着我们在与pandas一起工作时也可以使用我们所有的pandas技能!地理数据帧和pandas数据帧之间的主要区别在于。
2023-02-20 15:18:02
341
原创 Geospatial Data Science (1):Introduction and Geometric objects
在这种情况下,所有这些面在国家/地区级别上共享相同的属性,因此将该国家/地区存储为包含所有面的几何集合可能是合理的。在我们的示例中,距离是在笛卡尔坐标系中计算的。例如,可以提取 LineString(线)的坐标或长度,计算线的质心,沿线创建特定距离的点,计算从线到指定点的最接近距离并简化几何形状。从上面我们可以看到,多边形具有与单个几何对象完全相同的属性,但现在诸如面积之类的信息计算了单个对象组合的。从上面我们可以看到,多边形具有与单个几何对象完全相同的属性,但现在诸如面积之类的信息计算了单个对象组合的。
2023-02-12 20:14:38
478
原创 在surface go 2上安装ubuntu 20.04
下载ubuntu系统的iso文件使用Rufus软件将u盘制作为ubuntu系统的安装盘。
2023-02-12 00:13:22
1005
原创 ArcGIS学习(一)常用数据类型
ArcGIS中常用的数据类型有:矢量数据、栅格数据、Geodatabase数据库。对于数据库,我们后面会有一个单独的任务进行介绍,这一关我们先关注矢量数据与栅格数据。在矢量数据中,有一种特殊的数据格式叫TIN(Triangulated Irregular Networks,不规则三角网)。TIN数据通常用于数字地形的三维建模和显示,我们会单独拿出来给大家介绍。
2023-02-05 18:55:23
1459
原创 networkx学习(八)社区
关于社区结构的早期论文之一(发表于1949年)将一个所有成员都相互认识的群体定义为社区[5]。用图论的术语来讲,社区是一个完全子图,或者说一个团。团自然满足H2:是连通子图且有最大的链接密度。然而,若将社区视为团,会有如下缺陷:● 虽然网络中存在大量三角形,但更大的团很少出现。● 要求社区是完全子图可能太严苛了,很多合理的社区都不满足这一条件。例如,图8-2和图8-3中的社区无一是完全子图。
2023-01-30 23:49:02
609
原创 networkx学习(七)传播现象
网络科学研究者通常将超级传播者视为枢纽节点,即在疾病传播所依赖的接触网络中具有大量链接的节点。在这一章里,我们将引入基于网络的方法来对流行病传染现象进行分析,从而更好地理解和预测这些枢纽节点所产生的真正影响。这一类方法也被称为网络上的流行病模型(network epidemics),这一模型为量化和预测传染性疾病的传播提供了一套有效的分析计算框架。事实上,这两个假设都是错误的:个体只能把病原体传播给能接触到的人,因此病原体是在一个复杂的接触网络上进行传播的;如生物传播,数字传播,社交传播。
2023-01-30 19:29:35
203
原创 networkx学习(六)网络鲁棒性
移除单一节点对网络完整性的影响是有限的。然而,如果移除网络中的多个节点,就可以把一个网络拆分成多个独立的连通分支。显然,移除更多的节点,我们就更有可能破坏网络。于是,我们不禁要问:要移除多少个节点,我们才能把一个网络分解成一些相互独立的连通分支呢?举一个具体的例子:在互联网中,要破坏多少路由器,我们才能把互联网分解成相互不能沟通的计算机集群(簇)呢?若想回答这些问题,我们必须先熟悉研究网络鲁棒性的数学基础——渗流理论(percolation theory)如果f较小,那么缺少的节点对网络的损害不大。
2023-01-30 18:16:00
582
原创 networkx学习(五)无标度网络
在万维网的连接图背后似乎隐藏着大量的随机性。然而,仔细观察就会发现,万维网地图和随机网络之间存在一些令人费解的差异。实际上,在随机网络中,高度连接的节点——枢纽节点,是几乎不可能出现的。相比之下,万维网中同时存在大量度很小的节点和少数几个枢纽节点——拥有链接数异常多的节点。
2023-01-28 01:02:21
1606
铁路轨道不平顺数据分析与预测
2023-04-06
西南交通大学-铁路信号基础实验
2022-10-08
西南交通大学-信号与系统-轨道移频信号的抽样与重构
2022-04-23
基于MATLAB的列车防护曲线组合步长算法分析与仿真验证
2022-04-09
西南交通大学-铁路综合创新课程设计-计算机联锁软件
2022-01-22
tb106thurnherr.pdf
2020-01-30
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人