- 博客(350)
- 资源 (6)
- 收藏
- 关注
原创 Applied Spatial Statistics(十三)带有空间平滑器的 GAM
本笔记本演示了如何向 GAM 添加空间平滑器以解释空间自相关。参数,可以改变空间平滑器的样式。
2024-12-31 17:03:49 344
原创 Applied Spatial Statistics(十二)使用 `mgcv` 包的广义加性模型 (GAM)
% RFormula:------在“参数系数:”部分,它列出了线性预测因子的系数(如果有)。这里我们有一个全局截距,等于 25.18,并且它是显著的。在“平滑项的近似显著性:”部分,它列出了每个平滑器的估计自由度 (edf) 和 F 统计量。对于“edf”:如果它接近 1,则表示关系是线性的。2 的 edf 相当于二次曲线,依此类推,更高的 edf 描述的曲线更弯曲。在这种情况下,价格与 mpg 几乎是线性的,但 rpm 与 mpg 是最非线性的。
2024-12-31 16:38:36 936
原创 Applied Spatial Statistics(十一)多级模型 Multi-level models(可变截距)
这是一个如何使用 python 和pymer4包拟合 MLM 模型的示例。Pymer4 是 R 中著名的lme4包的 python 版本,其文档可在以下位置找到:https://eshinjolly.com/pymer4/
2024-11-25 22:54:33 614
原创 Applied Spatial Statistics(十)多级模型 Multi-level models(变化的截距和斜率)
我们还可以看到随机效应的分布,它们应该是从多元正态分布中得出的,截距的方差为 119.701,pct_bach 的方差为 0.076,相关性为 -0.641。负相关表示,当截距较大时,各州的斜率较小(较平坦)。但是,如果任何置信区间包含零,则它在统计学上不显著。如果固定效应不显著,则意味着它对因变量没有全局影响。但是,如果任何置信区间包含零,则它在统计学上不显著。如果固定效应不显著,则意味着它对因变量没有全局影响。如果随机效应不显著,则意味着各组之间没有差异。如果随机效应不显著,则意味着各组之间没有差异。
2024-11-25 22:52:54 742
原创 Applied Spatial Statistics(九)GWR示例
这是一个基本的示例笔记本,演示了如何使用开源“mgwr”包在 Python 中校准 GWR(Fotheringham 等人,2002)模型。例如,您可以发现,尽管我们在回归系数中看到了这种模式,但 PctBlack 和 PctBach 之间的关联实际上并不显著。局部估计值可以从“gwr_results.params”中获得,它返回一个 n x p 数组,其中 p 是模型中的预测变量的数量(包括截距)。我们将使用佐治亚州的一个示例数据集,以下是数据中的一些变量。现在让我们检查一下 GWR 模型的残差。
2024-10-17 19:26:33 979
原创 Applied Spatial Statistics(八):GWR 和 MGWR 示例
我们经常会观察到 GWR 模型的残差具有较低的 Moran’s I 值,这表明已考虑了空间结构。局部截距是一种内在背景效应,例如,表明有多少影响可以归因于“位置”。在 GWR 或 MGWR 中,我们经常建议对独立变量和因变量进行标准化。中获得,它返回一个 n x p 数组,其中 p 是模型中的预测变量的数量(包括截距)。这种方法的好处是,获得的系数变得“无单位”,允许跨变量和位置比较变量重要性。这是一个基本示例笔记本,演示了如何校准 GWR 或 MGWR 模型。现在让我们检查一下 GWR 模型的残差。
2024-08-21 15:57:16 1247
原创 Applied Spatial Statistics(七):Python 中的空间回归
本笔记本演示了如何使用 pysal 的spreg库拟合空间滞后模型和空间误差模型。
2024-06-23 16:25:50 1121
原创 Applied Spatial Statistics(六)线性回归 II(模型选择)
我们可以看到,对 mpg 进行对数变换后,残差图看起来更好,并且残差比之前的模型更服从正态分布。由于非线性很强,我们可能会想到对变量进行变换。让我们尝试记录因变量 mpg。mpg ~ 截距 + 重量 + model_year。这里我尝试了逐步进行。检查 VIF,全部 < 10。我们可以看到事情正在变得更好。检查残差图:发现很强的非线性。一些基本的探索性可视化。让我们直接获取数字列。
2024-05-19 15:36:07 1095 1
原创 Applied Spatial Statistics(五)线性回归 I
b0 = 10#b1 = 4线性回归结果总结yR-squared:0.944OLS0.9441.678e+040.0019:25:57-1394.31000AIC:2793.998BIC:2802.1nonrobustcoefstd errtP>|t|[0.0250.975]const9.93720.031321.2280.0009.8769.998x14.02510.031129.5410.0003.9644.0861.6471.9240.4391.6710.098。
2024-05-12 00:24:04 926
原创 Applied Spatial Statistics(四)点模式分析-KDE 分析和距离函数
--- 1853年伦敦霍乱爆发在此示例中,我将演示如何使用 John Snow 博士的经典霍乱地图在 Python 中执行 KDE 分析和距离函数。原始数据从这里获得:seabornpointpatscontextily。
2024-05-09 17:25:33 807
原创 Applied Spatial Statistics(三)点模式分析 - 最近邻分析
点模式分析是一种用于识别数据集中的异常或异常模式的统计方法。在点模式分析中,最常用的一种分析方法是最近邻分析(Nearest Neighbor Analysis)。这种方法主要关注数据点之间的距离,通过比较数据点与其最近邻点的距离来识别异常值或异常模式。
2024-05-09 15:57:20 1192
原创 kaggle(4) Regression with an Abalone Dataset 鲍鱼数据集的回归
通过物理测量预测鲍鱼的年龄。鲍鱼的年龄是通过将鲍鱼壳从锥体上切开、染色并通过显微镜计算环数来确定的。
2024-04-28 16:39:40 1324
原创 Applied Spatial Statistics(二)统计推断:排列测试
本笔记本演示了如何执行假设检验和 p 值计算的排列检验。让我们抽取一个非常小的样本,只有 10 个点。 mpg cylinders displacement horsepower weight acceleration model_year origin name 165 20.0 8
2024-04-18 19:18:05 727
原创 Applied Spatial Statistics(一)统计推断
本笔记本演示了如何使用引导方法构建统计数据的置信区间。我们还将检查 CI 的覆盖概率。1.构建Bootstrap CI我们有 95% 的信心认为人群中 HP 和 ACC 的真实相关性在 -0.855 到 -0.606 之间。在这种情况下,CI 不覆盖 0,这意味着总体相关系数不为零。因此,我们从样本中观察到的负趋势不仅仅是因为抽样变化,而是因为总体中真正的相关性是负的。我们有 95% 的信心认为人群中 HP 和 ACC 的真实相关性在 -0.855 到 -0.606 之间。
2024-03-31 22:04:14 1171
原创 ArcGIS学习(十九)基于GIS平台的水文分析
ArcGIS提供了一系列的水文分析工具,这些工具主要集中在ArcToolbox中的“水文”工具集里。这些工具可以帮助用户进行流域分析、流向分析、流量累积分析等。在ArcGIS中使用Python进行水文分析,可以通过ArcPy模块来实现,ArcPy是ArcGIS的Python库,它提供了与ArcGIS桌面应用程序相同的功能。
2024-03-12 20:17:45 1133
原创 ArcGIS学习(十八)基于GIS平台的水文分析
本任务给大家带来的内容是城市景观可视性综合分析。本任务的内容非常有意思,且非常实用,但是技术操作较为复杂。在进行正式分析之前,我们先来预习本任务的内容,以及了解ArcGIS中景观视线分析的原理。先来看看“本任务会讲哪些内容?
2024-03-12 17:24:37 1084
原创 ArcGIS学习(十七)基于GIS平台的水文分析
流域特征包括流域面积、流域长度、流域形状等。这些特征对于理解流域的水文行为至关重要。# 定义流域# 提取流域特征。
2024-03-12 03:08:53 1398
原创 ArcGIS学习(十六)基于交通网络的城市情景分析
本任务给大家带来一个非常重要的内容一一基于交通网络的城市情景分析。基于交通网络模拟交通出行并进行相关分析是ArcGIS里面一种常用的分析方法,大家一定要掌握!
2024-03-12 02:57:45 1570
原创 ArcGIS学习(十五)用地适宜性评价
在Python中实现ArcGIS用地适宜性评价,通常涉及到ArcPy库的使用,这是ArcGIS的一个Python库,它允许用户通过Python脚本执行GIS分析。请注意,这个脚本是一个简化的示例,实际应用中需要根据具体的数据和需求进行调整。:首先,你需要确定影响用地适宜性的评价因子,例如地形条件、交通条件、现状建成用地、公共基础设施、河流、森林、耕地、生态保护区等。第四步:对量化后的各个指标进行加权叠加分析,得到用地适宜性评价的指标。首先,我们来了解用地适宜性评价的分析思路及评价指标的选取。
2024-03-11 16:49:02 2848
原创 ArcGIS学习(十四)OD分析
本任务给大家带来的内容是网络节点关系分析。网络节点关系分析一般也叫OD分析。“O”指的是起点(ORIGIN),"D”指的是终点(DESTINATION),0D分析即为基于起点到终点的分析。网络节点关系分析我们经常遇到,如不同城市之间的空间关系分析,不同城市群之间的空间关系分析,城市内通勤分析等。下面给大家看两个实际项目中的OD分析成果图:我们先进行第一个案例一一上海市KFC与麦当劳的空间聚集度分析。首先,我们来看看这个案例的场景和数据。
2024-03-11 02:40:53 2021
原创 ArcGIS学习(十三)多源数据下的城市街道功能评估
本任务带来的内容是多元数据下的城市街道功能评估。本任务包括两个关卡:城市街道空间中观解读城市街道功能详细评价首先,我们来看看本任务的分析思路。
2024-03-05 19:29:43 1314
原创 ArcGIS学习(十二)ModelBuilder参数化建模
本任务给大家带来的是ArcGIS中一个非常有意思也很重要的模块一-ModelBuilder。ModelBuilder有什么用呢?大家设想一下这些场景:你在做一项复杂研究,使用到ArcGIS中的多个工具和步骤,包括缓冲区分析、空间连接、字段计算器、裁剪、相交等,如果一步步调用工具,输入数据,输出结果非常耗时,有没有更快速的方法?领导给了你全国道路数据和全国城市边界数据,让你把每个城市的道路裁剪出来保存成单独的文件,全国有近300个地级市,这个时候你怎么办?
2024-03-05 16:42:45 1555
原创 ArcGIS学习(十)城市用地对比分析
本任务给大家带来的内容是城市用地对比分析,包括两个关卡:城市用地变更分析用地规划方案实施评价城市用地变更分析和用地规划方案实施评价是我们进行用地分析时常见的两种场景。其中:城市用地变更分析主要是对不同年份的用地变化情况进行对比分析;用地规划方案实施评价是将规划期内实际变化的用地与规划方案里面规划的用地进行对比分析,得到用地规划方案实施情况的评价。首先先来看看这个任务的场景和基础数据。
2024-03-04 17:14:05 1307
原创 ArcGIS学习(九)选址分析
本任务给大家带来的案例是租房选址分析。选址分析是我们平时经常接触到的分析场景。概括起来说,选址分析就是根据选址条件来确定哪些区域满足我们的选址要求。首先,先来看看我们这个案例的场景和基础数据。我们以某个城市某一租客的租房选址为例。假定这个租客的租房要求是:①家中有小孩要读高中,因此对高中这个教育设施非常看重,表征方式是租房地点距离高中要在1000米内,最好是距离高中700米内;②家中有老人,需要有良好的医疗设施,表征方式是租房地点距离医院要500米内;
2024-03-04 16:20:47 2175
原创 ArcGIS学习(八)基于GIS平台的控规编制办法
在ArcGIS中使用Python进行控制性详细规划(控规)编制,可以通过ArcPy站点包来实现自动化和脚本化的操作。ArcPy是ArcGIS的一个Python站点包,它提供了与ArcGIS Desktop API相似的功能,允许用户通过Python脚本执行各种GIS操作。这一关我们来学习一个比较简单的案例一一”如何在ArcGIS中录入控规指标,绘制控规图纸?接着,来看看如何录入控规地块的各项指标,包括地块用地面积、容积率绿地率等。首先,先来看看这个案例的分析思路以及导入CAD格式的控规图纸。
2024-02-17 15:35:36 1267
原创 ArcGIS学习(七)图片数据矢量化
在Python中实现ArcGIS图片数据的矢量化,可以通过使用ArcPy库,这是ArcGIS的Python API,它提供了与ArcGIS桌面软件相似的功能。例如,你可能需要处理多波段数据,或者在转换过程中进行更复杂的处理,如设置不同的阈值来确定哪些像素应该被转换为矢量。如果你还没有安装ArcPy,你需要先安装它。我们在平时的工作学习中,肯定遇到过想用某个数据,但是找到的数据是图片格式,无法导入GIS进行分析的情况。一旦矢量化完成,你可以将矢量数据保存,并在ArcGIS中打开它进行进一步的分析或制图。
2024-02-12 00:31:32 3852
原创 ArcGIS学习(六)地理数据库
ArcGIS 中的地理数据库(Geodatabase)是一个用于存储和管理地理空间数据的系统,它提供了一种结构化的方式来组织和管理地图、图层和其他地理信息。地理数据库的核心是一个标准的关系数据库方案,它定义了一系列的数据库表、列类型、索引和其他数据库对象。如果你需要更详细的教程或者有特定的任务需求,可以参考ArcGIS的官方文档,或者在社区论坛(如Esri Community、Stack Overflow等)寻求帮助。在ArcPy中,你需要设置一个工作空间,这通常是你的地理数据库的路径。
2024-02-07 15:42:01 2429
原创 ArcGIS学习(五)坐标系-2
在第二关中,我们学习了ArcGIS中的定义投影工具。这一关,我们带来一个大家在平时工作学习中经常碰到的关于“定义投影”的疑难问题一-国内CAD地形图的坐标定义。CAD地形图是我们在做项目时最常接触到的基础数据。拿到CAD地形图后,我们经常需要把CAD地形图加载到ArcGIS中,并且需要和其他数据在空间上进行对应。当CAD文件导入ArcGIS的时候,软件会出现以下界面:提示说这个文件的空间参考未知!这是因为CAD文件没有默认的投影文件。
2024-02-06 18:13:47 2026
原创 ArcGIS学习(四)坐标系-1
在上一关中,我们学习了坐标系的基础知识。本关我们重点学习ArcGIS中两个坐标系相关的工具:定义投影投影(投影栅格)首先,我们先来看一下定义投影工具。定义投影的作用是对没有坐标信息的数据进行坐标定义。接着,我们来学习一下投影(投影栅格)工具。投影(投影栅格)的作用是实现坐标系之间的转换。包括地理坐标系和投影坐标系之间的转换,地理坐标系与地理坐标系之间的转换,或者投影坐标系与投影坐标系之间的转换。投影”工具是应用于矢量数据的’投影栅格”工具是应用于栅格数据的下面先看看投影。
2024-02-06 18:12:50 2348
原创 ArcGIS学习(三)数据可视化
需要提前说明的是,在ArcGIS中,所有的可视化选项设置都是在“图层属性”对话框里面的“符号系统”中实现的。对于矢量数据的可视化,主要有四种可视化方式:按“要素”可视化按“类别”可视化按“数量”可视化按“图表”可视化还有一种按“多个属性”可视化,这种方式较少使用,这里就不进行介绍了,如果大家感兴趣,可自行学习。首先,先来看看按“要素”可视化,这个非常简单。然后,我们再来看看按“类别”可视化。接着,我们来看看按“数量”可视化。最后,我们来看按“图表”可视化。
2024-02-05 00:07:27 2856
原创 ArcGIS学习(二)属性表的基本操作
ArcGIS是处理空间数据的平台。对于空间数据,大家可以理解成它是由两个部分构成:1.一个是空间形体,也就是点、线、面三种。线又可以分为直线、曲线,面又分为圆形、正方形、不规则形体等;2.另外一个部分是空间形体所附带的属性,比如一个城市区域(对应到空间形体就是一个面)的属性,包括人口、GDP、企业数等。空间形体+属性构成了空间数据。属性的相关操作主要在属性表中进行!属性表的样子及功能和Excel表比较相似,可以理解为ArcGIS中的Excel表。
2024-01-31 15:36:53 2183
原创 计算机联锁软件编制
由于计算机在逻辑功能和信息处理方面具有很强的功能,它非常适用于车站联锁。计算机联锁是用微型计算机和其他一些电子、继电器件以及各种计算机软件组成的具有故障-安全性能的实时监控系统。计算机联锁安全可靠,处理速度快,在安全性、可靠性、经济性等方面都具有独特的优点,而且在设计、施工、维修和使用方面大为方便。一般来说,计算机联锁系统的软件应具有人机界面信息处理功能、联锁功能、自动检测与诊断功能等,本次项目的设计的重点主要是利用编程软件实现人机界面信息处理功能以及联锁功能。
2024-01-27 15:43:11 1484
原创 BikeDNA(九) 特征匹配
特征匹配采用参考数据并尝试识别 OSM 数据集中的相应特征。 特征匹配是比较单个特征而不是研究区域网格单元水平上的特征特征的必要前提。方法将两个道路数据集中的特征与其数字化特征的方式以及边缘之间潜在的一对多关系进行匹配(例如,一个数据集仅映射道路中心线,而另一个数据集映射每辆自行车的几何形状) 车道)并不是一项简单的任务。这里使用的方法将所有网络边缘转换为统一长度的较小段,然后再寻找参考和 OSM 数据之间的潜在匹配。 匹配是根据对象之间的缓冲距离、角度和无向 Hausdorff 距离完成的,并且基于 Ko
2024-01-13 11:47:03 1114
原创 BikeDNA(八)外在分析:OSM 与参考数据的比较2
本节仔细研究两个数据集的网络组件特征。断开连接的组件不共享任何元素(节点/边)。换句话说,不存在可以从一个断开连接的组件通向另一组件的网络路径。如上所述,大多数现实世界的自行车基础设施网络确实由许多断开连接的组件组成(然而,当两个断开的组件彼此非常接近时,这可能是边缘缺失或另一个数字化错误的迹象。为了比较 OSM 和参考数据中断开组件的数量和模式,将内在分析的所有组件结果并置,并生成两个新图,分别显示 OSM 和参考数据的组件间隙以及组件连接性的差异。
2024-01-13 11:32:34 932
原创 BikeDNA(七)外在分析:OSM 与参考数据的比较1
该笔记本将提供的参考自行车基础设施数据集与同一区域的 OSM 数据进行所谓的外部质量评估进行比较。为了运行这部分分析,必须有一个参考数据集可用于比较。该分析基于将参考数据集与 OSM 进行比较,并突出显示它们的不同之处,包括自行车基础设施在两个数据集中映射的“程度”以及基础设施“如何”映射,从而查明差异 在网络结构中。例如,网络密度的差异是通过计算参考密度减去 OSM 密度来计算的。因此,正差值(大于0)表示参考值高出多少;负差值(低于 0)表示参考值低了多少。
2024-01-13 11:32:07 1194
原创 BikeDNA(六)参考数据的内在分析2
断开连接的组件不共享任何元素(节点/边)。换句话说,不存在可以从一个断开连接的组件通向另一组件的网络路径。如上所述,大多数现实世界的自行车基础设施网络确实由许多断开连接的组件组成(然而,当两个断开的组件彼此非常接近时,这可能是边缘缺失或另一个数字化错误的迹象。首先,在“return_components”的帮助下,获得网络所有(断开连接的)组件的列表。打印组件总数,并以不同颜色绘制所有组件以进行视觉分析。接下来,绘制组件大小分布(组件按其包含的网络长度排序),然后绘制最大连接组件的图。
2024-01-12 23:57:13 888
原创 BikeDNA(五)参考数据的内在分析1
该笔记本分析用户提供的给定区域的参考自行车基础设施数据集的质量。质量评估是“内在的”,即仅基于一个输入数据集,并且不使用数据集外部的信息。对于将参考数据集与相应 OSM 数据进行比较的外在质量评估,请参阅笔记本 3a 和 3b。该分析评估给定区域参考数据的“目的适应性”(分析的结果可能与自行车规划和研究相关 - 特别是对于包括自行车基础设施网络分析的项目,在这种情况下,几何拓扑尤为重要。由于评估不使用外部参考数据集作为基本事实,因此无法对数据质量做出普遍的声明。
2024-01-12 23:56:59 1035
原创 BikeDNA(四)初始化参考数据
先决条件和条件 输入/输出config.yml必须提前设置。此笔记本的输出文件保存到子文件夹中,并在笔记本 2b、3a 和 3b 中使用。当根据参考数据创建网络时,每条边都会分配一个唯一的边 ID。要将边缘 ID 与原始数据中的 ID 相关联,请使用具有网络边缘的数据帧ref_edges和
2024-01-12 23:24:20 856
原创 2023-我的CSDN创作之旅
实际案例可能涉及地图创建、地理数据的清理和处理,以及地理数据的实际应用,如位置分析、地理编码等。CSDN博客是我自本科以来写作并记录学习心得与感悟的地方,我最自豪的就是几年以来的坚持写作,不仅是为了方便自己查阅,同时做到了知识分享,在CSDN中与各位一同交流与进步。本章主要介绍了 BikeDNA,可能是一个特定项目或者应用的名称,内容可能包括自行车数据的收集、分析、可视化,以及与空间数据科学、网络分析等相关的应用。本章将深入探讨地理计算的主题,包括地理数据的计算、地理算法、地理计算的工作流程等。
2024-01-05 02:55:52 1160 36
纵断面-记录和计算工程项目中特定区域的纵断面特性.xlsx
2024-03-23
逐桩坐标表直线段.xlsx
2024-03-23
逐桩坐标表曲线段 方位角.xlsx
2024-03-23
逐桩坐标表-用于记录和存档工程项目中的详细地理位置信息.xlsx
2024-03-23
直线、曲线及转角表.xlsx
2024-03-23
土石方数量计算表.xlsx
2024-03-23
土方计算表-用于土木工程项目中的土地移动量计算.xlsx
2024-03-23
高等路基设计表.xlsx
2024-03-23
铁路轨道不平顺分析与预测(完整数据与代码)
2024-01-27
大创经验分享&项目资源&代码程序资源
2024-01-27
ACM/NOI/CSP比赛经验分享&代码程序资源:深度优先搜索
2024-01-27
大创经验分享&项目资源&代码程序资源:模型车牌生成器
2024-01-27
图像风格迁移研究数据集,提供一幅画将任意一张照片转化成这个风格
2024-01-27
电赛历年试题&经验分享&代码程序资源:2020年电赛A题代码
2024-01-27
MySQL-Notes学习笔记
2024-01-27
该方案作为一套多功能的后台框架模板,适用于绝大部分的后台管理系统开发 基于 Vue3 + pinia + typescript
2024-01-27
网页版拳皇KOF-practice
2024-01-27
自然语言处理学习笔记nlp-tutorial
2024-01-27
程序员简历模板,简洁明了,逻辑结构清晰
2024-01-26
2020年美赛D题2020-ICM-Problem-D
2024-01-26
遗传算法求解最优解最大值项目.zip
2024-01-26
第16届智能车规则.pdf
2024-01-22
蓝桥杯标准模板.zip
2024-01-22
java面经文档、技术要点或面试编程题资源
2024-01-22
vue面试题面试集锦01.md
2024-01-22
08.如何分析开源项目.md
2024-01-22
07.SpringCloud.md
2024-01-22
06.SpringBoot.md
2024-01-22
05.SSM整合.md
2024-01-22
04.SpringMVC.md
2024-01-22
03.Spring入门.md
2024-01-22
02.SSM框架之Mybatis.md
2024-01-22
01.JavaWeb入门.md
2024-01-22
java学习:索引.md
2024-01-22
java学习:01.设计模式.md
2024-01-22
java学习:01.JUC.md
2024-01-22
01.Vue学习笔记.md
2024-01-22
java学习:01.ElasticSearch入门.md
2024-01-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人