- 博客(380)
- 资源 (6)
- 收藏
- 关注
原创 GeoHD - 一种用于智慧城市热点探测的Python工具箱
在城市数据分析领域,研究对象的空间分布通常呈现出不均匀性,具有明显的空间异质性。密度较高的点数据往往代表着区域内事件的热点。因此,城市区域内热点的探测成为了城市研究的一个焦点话题,对于规划者、研究人员以及管理部门具有重要的价值。以犯罪热点的探测为例,通过对城市犯罪历史数据的分析可以揭示出犯罪活动发生的原因,进而有助于相关管理部门制定更加有效的犯罪预防策略。在过去的研究中,已经有多种经典的聚类算法或热点分析方法被应用于城市热点探测,比如Getis-Ord空间统计、k均值聚类以及核密度分析等。
2025-02-20 18:52:08
1809
原创 基于MATLAB的列车防护曲线组合步长算法分析与仿真验证
基于MATLAB的列车防护曲线组合步长算法分析与仿真验证说明:本文即本人城市轨道交通控制课程的课程设计,参考了一些论文,并提出了一些创新(算法精度的比较部分),附有个人编写的MATLAB代码,可能会有一些小错误,欢迎大家交流!列控系统中,只要与列车运行安全有关的问题,ATP都要进行防护。然而,运行安全的主要问题是列车运行速度的防护,故而经常将ATP子系统也称为“速度防护”或“超速防护”系统。所以,对车载ATP系统模型进行研究,重点在于研究ATP超速防护曲线算法。列车超速防护曲线主要是按照取步长的方式通过
2021-06-16 00:22:23
4968
12
原创 AI 的“诚实”指南:一文详解 Conformal Prediction (共形预测) 与 Split Conformal
假设我们有一组随机变量Z1Z2ZnZ1Z2Zn(其中ZiXiYiZiXiYi如果我们要对这一组变量的联合分布进行全排列,而排列后的联合概率分布保持不变,那么这组变量就是可交换的。通俗地说,数据的顺序不重要。最常见的可交换数据就是i.i.d. (独立同分布)数据。但可交换性的范围比 i.i.d. 更广(例如无放回抽样也是可交换的)。点预测是不可靠的:必须构建预测区间来量化不确定性。Split Conformal 是首选。
2026-01-22 17:15:09
908
原创 论文深度解析:基于大语言模型的城市公园多维度感知解码与公平性提升
本文针对城市公园感知测量的精细化不足与公平性评估缺口,提出了一套融合社交媒体数据与大语言模型(LLM)的创新分析框架。通过领域适配微调开发的Park-Perception-LLM模型,实现了对感知可达性、可用性、吸引力三大核心维度83%-91%的高精度分类。将该感知指标创新性地融入增强两步浮动集水区法(E2SFCA),以香港高密度城市为案例,系统揭示了公园质量与数量的空间不平等及错配模式。借助多元回归模型,深入挖掘了公园内部特征、宏观建成环境、微观街道景观及时间因素对感知的影响机制。
2026-01-12 16:19:27
751
原创 论文深度解析:多模态大模型在城市骑行环境感知模拟中的潜力探索
随着全球对环境、社会、治理(ESG)原则的重视日益提升,城市骑行凭借其环境友好、有益健康、促进社交等多重优势,已成为可持续交通系统的核心组成部分(United Nations General Assembly, 2022)。然而,要通过提升骑行率实现相关政策目标,关键在于深入理解影响个体骑行决策的核心因素——骑行环境感知。人类对城市骑行环境的主观感知,是连接客观环境与个体出行行为的关键中介(Blitz, 2021),直接决定了骑行行为的意愿与频率。
2026-01-12 01:09:46
823
原创 论文深度解析:考虑空间异质性的出租车超速频率建模(GWNBRg方法)
本文聚焦城市出租车超速问题,针对传统模型忽略空间异质性的缺陷,提出了两种地理加权负二项回归模型(GWNBR和GWNBRg),结合GPS轨迹数据与地理信息数据,系统分析了出租车超速频率的影响因素及空间分布特征。研究以成都一环路内区域为案例,验证了模型的有效性,为精准制定交通限速干预策略提供了理论支撑和实践指导。核心贡献:图4 基于隐马尔可夫模型和维特比算法的地图匹配流程:通过状态转移概率和观测概率,从候选路径中筛选最优匹配结果,提升GPS轨迹与道路网络的匹配精度。最终筛选13个解释变量,分为4大类,描述性统计
2026-01-12 00:51:47
784
原创 GeoShapley论文详细解析:一种度量机器学习模型空间效应的博弈论方法
原文:GeoShapley: A Game Theory Approach to Measuring Spatial Effects in Machine Learning Models随着机器学习(ML)和人工智能(AI)在地理空间现象建模中的广泛应用,其在处理海量异质数据、捕捉复杂结构方面的优势日益凸显。然而,机器学习模型的“黑箱”特性严重阻碍了其在科学发现中的应用——地理学家更关注模型的可解释性,以理解地理空间现象背后的关系和过程。可解释人工智能(XAI)的发展为解决这一问题提供了思路,其中SHAP(
2026-01-11 01:36:49
1020
原创 GeoConformal Prediction——空间预测不确定性量化的通用框架
空间预测是地理学核心任务之一,在自然资源管理、城市规划、环境监测等领域发挥着关键作用。随着地理空间人工智能(GeoAI)的快速发展,现有研究多聚焦于提升预测精度,却忽视了对预测不确定性的可靠量化。而不确定性评估是增强模型可信度、支撑负责任决策的核心前提。
2026-01-11 01:26:47
29
原创 [论文解读] GeoXCP详解
GeoXCP 是一种后处理(Post-hoc)框架,它不需要你修改原有的 AI 模型结构。它用代理模型解决了解释器没有真值的问题。它用非一致性评分量化了模型的认知偏差。它用地理加权实现了对空间异质性的自适应调整。对于从事 GIS、城市计算、环境科学的同学来说,GeoXCP 是从“由数据驱动”迈向“可信 AI”的重要一步。下次当模型告诉你某个结论时,记得用 GeoXCP 问一句:“你确定吗?确定的范围是多少?
2026-01-11 00:34:55
50
原创 GeoXCP:可解释人工智能中空间解释的不确定性量化
GeoXCP: uncertainty quantification of spatial explanations in explainable AI提出基于保形预测(conformal prediction)的不确定性量化框架——地理空间解释保形预测(GeoXCP),将空间依赖纳入建模过程,生成具有校准不确定性估计的空间自适应解释。通过大量模拟实验和真实世界数据集验证,GeoXCP在不同地理空间场景中能提供可靠解释并有效量化不确定性,推动可解释地理空间机器学习的发展,帮助决策者评估模型驱动洞察的可信度。
2026-01-07 19:27:27
76
原创 城市韧性与交通基础设施系统耦合协调度的时空演变及影响因素
UR与TI发展水平均呈动态增长态势;二者耦合协调度持续上升(均值从0.3012升至0.4018),但整体仍处于“轻度失衡”阶段;耦合协调度空间分布不均,济南、青岛水平显著领先;指标层障碍因素存在城市异质性,维度层中经济韧性与交通基础设施建设水平是主要制约因素。
2025-12-12 22:09:12
944
原创 以出行需求驱动的城市服务设施空间失衡识别与优化
本文聚焦城市化加速背景下城市服务设施供需失衡问题,提出了一套以出行需求为导向的空间失衡识别与优化方法,并以哈尔滨餐饮设施为案例进行实证验证,为城市规划资源配置提供了科学工具。欢迎交流与引用!
2025-12-12 02:40:49
768
原创 增强城市数据分析:多密度区域的自适应分区框架
在城市科学研究中,,无论是犯罪预防、交通规划还是公共服务布局,区域划分的合理性直接决定后续模型精度与结论可靠性。正是这些问题,促使研究团队设计一套能适配多密度数据、跨场景通用且能缓解MAUP影响的区域划分框架。
2025-11-22 17:19:03
1050
原创 基于人眼视角的建成环境对地铁-自行车一体化的非线性影响
地铁-自行车一体化是缓解气候变化、推动城市可持续交通转型的重要策略,现有研究已证实社区层面建成环境(如可达性、城市密度、土地利用混合度、自行车基础设施 proximity)对骑行行为的影响,但人眼视角建成环境(个体在街道层面感知的物理与视觉特征)的作用尚未被充分探索。数据类型来源与时间处理方法核心变量自行车共享数据苏州有桩自行车,2021.1.4-1.101. 筛选标准:站点名称含“地铁”或距离地铁站≤50米(参考Lin et al., 2019);2. 排除地铁停运时段(1-6点);
2025-11-22 17:08:52
1051
原创 基于中国深圳无桩共享单车数据的出行目的推断与时空活动模式挖掘
建立映射关系:基于表1,将9类骑行目的(家庭、工作、换乘等)与对应的POI类别关联,明确“目的-POI”对应规则;划定目的地范围:以骑行落点为中心,定义“最大步行半径”,范围内的POI作为“候选POI”(即用户可能前往的目的地);计算POI吸引力:用重力模型(基础/改进),结合距离、时间、环境等因素,计算每个候选POI对用户的吸引力;推断骑行目的:用贝叶斯规则,基于POI吸引力计算用户访问各候选POI的概率,概率最高的POI对应的目的即为“推断结果”。
2025-11-13 23:29:41
1015
原创 【雅思备考】雅思写作笔记
需要两方面讨论,不能只偏向一方,和讨论型相似(比较型的结论都是偏向于哪方面的,尽管他有好处,但是坏处大于好处|尽管他有坏处但是他的好处大于坏处,两个观点不是平均的)抓住主体关键词,利用3C分解法,拆分出来儿童的两个特点,不成熟、健康的成长环境,形成一边倒的态度方向,有害要禁止,agree的态度。因为是第一视角,所以在总观点句不可少的就是第一视角词汇的运用,在分论点也可以使用,但是为了不重复,在分论点句可以做省略。C1-2 没有自制力-产生犯罪(细节,做什么事情)this/that/these/those;
2025-10-31 23:10:51
880
原创 共享自行车与电动共享自行车使用中建成环境影响的对比研究:基于合肥数据的时空机器学习分析
双重优势整合:首次将 XGBoost 的非线性捕捉能力与 GTWR 的时空异质性刻画能力结合,解决了“单一模型无法同时处理非线性与时空变化”的行业痛点;本地化建模逻辑:通过“时空邻居加权”实现“每个数据点对应一个局部模型”,而非全局统一模型,更贴合共享微出行“时空动态变化”的实际特征,为后续政策建议提供更精准的量化依据。
2025-10-31 21:12:22
792
转载 [转]交通大模型与时序大模型整理【共15篇工作】
这篇论文提出了TransGPT,一个针对交通领域的新型多模态大型语言模型(LLM),旨在解决智能交通系统(ITS)中自然语言处理(NLP)面临的挑战。这些挑战包括领域特定的知识和数据,以及多模态输入和输出的处理。TransGPT包含两个独立的变体:针对单模态数据的TransGPT-SM和针对多模态数据的TransGPT-MM。
2025-09-06 16:28:22
273
原创 面向空间可变尺度的城市时空预测研究
论文针对城市位置服务(如网约车)中的时空(Spatio-Temporal, ST)预测问题,指出现有ST模型的核心缺陷:需预先划分区域,导致两类问题——(1)不同场景需多尺度/多区域模型,成本高昂;(2)多模型预测结果冲突(即可修改区域单元问题(Modifiable Areal Unit Problem, MAUP)为解决上述问题,论文提出One4All-ST框架高效多尺度表示学习:设计含分层空间建模和尺度归一化模块的ST网络,平衡多尺度学习效率与公平性;预测一致性优化:通过动态规划。
2025-08-26 21:07:07
692
原创 考虑地理空间异质性的集成空间预测方法
本文提出的GSH-EL方法通过准确表达空间异质性,显著提高了空间预测模型的性能。实验结果表明,该方法在多个实际数据集上均优于现有的集成学习策略。尽管存在一些局限性,但本文的研究为地理空间预测领域提供了一种新的思路和方法,未来的研究将进一步优化该方法,并拓展其应用范围。
2025-07-09 13:00:00
1385
原创 基于图深度学习的GeoAI增强空间网络社区发现
定义图嵌入是一种强大的表示学习技术,通过将节点属性和拓扑图结构结合到向量中,降低数据的维度。利用向量中捕获的信息,节点聚类可以自然地从图嵌入中扩展出来。优势在各种场景中,利用属性信息以及图结构可以为节点聚类带来更好的结果。深度学习算法,包括基于随机游走的算法和基于GCN的算法,在图嵌入任务中都表现出了良好的性能。图的定义图GVEG = (V, E)GVE由节点集合Vv1vnVv1vn(例如地点和区域)和边集合EEE组成,其中∣V∣n|V| = n∣V。
2025-07-07 13:00:00
1510
原创 基于图神经网络的多Agent深度强化学习优化路网大规模车队管理
在网约车服务中,车队管理的核心目标是实现供需平衡,确保车辆在正确的时间和地点可用。这需要一个智能且及时的动态资源重新分配策略。本文将这一问题形式化,并提出了一种基于多智能体强化学习和图神经网络的解决方案,旨在最大化订单响应率,即已服务订单数与总订单数的比值。这一指标相比传统的商品交易总量(GMV)更能直接反映客户满意度和公司收入。模拟器是本文提出的车队管理策略的核心实验平台,它旨在精确模拟现实世界的网约车运营环境。
2025-07-02 10:00:00
691
原创 BikeshareGAN:基于卫星影像的无桩共享单车需求预测
无桩共享单车(Dockless Bike-Sharing, DBS)发展迅速,准确预测其停车需求对城市管理至关重要,但传统预测模型多基于回归方法,需大量精细地理信息系统(GIS)数据,收集成本高且在发展中国家难以获取。卫星图像包含丰富城市系统数据,作者假设生成对抗网络(GAN)能利用卫星图像有效预测DBS需求。基于回归和GAN的方法。( a )传统的回归模型需要细粒度的GIS数据,收集起来比较麻烦。( b )本文提出了一种基于卫星图像的直接预测方法。
2025-06-05 12:00:00
1296
原创 停泊式共享单车的出行需求与建筑环境之间的关联:来自美国 7 个城市的证据
原文:Tang, Justin Hayse Chiwing G., et al. “The association between travel demand of docked bike-sharing and the built environment: Evidence from seven US cities.” Sustainable Cities and Society 106 (2024): 105325.
2025-04-28 23:50:44
1358
原创 城市群出行需求的时空分形
原文:He, Zhengbing. “Spatial-temporal fractal of urban agglomeration travel demand.” Physica A: Statistical Mechanics and its Applications 549 (2020): 124503.
2025-04-28 21:23:19
1773
原创 描述城市出行需求模式的复杂网络视角:大规模起点-目的地需求网络的图论分析
研究背景:全球城市人口增长导致对活动和出行需求增加,城市面临压力。传统的基于活动和代理的出行需求模型虽有助于理解出行选择机制,但出行需求通常未从网络角度分析。而交通网络建模进展多集中在供给侧,如日内平衡和日间交通流演变等。研究目的和方法:提出一种基于复杂网络的跨学科定量框架,通过分析起讫点需求网络的统计特性来理解和刻画城市出行需求模式。选取芝加哥和墨尔本两个城市的出行需求模式进行比较,运用复杂网络理论中的图论分析方法。研究结果和结论:尽管两城市在地形和城市结构上存在差异,但出行需求网络展现出相似的性质。
2025-04-22 21:18:10
860
原创 从 GPS 数据中捕捉城市休闲热点:空间异质性视角下的新框架
原文:Capturing urban recreational hotspots from GPS data: A new framework in the lens of spatial heterogeneity。
2025-04-22 19:46:42
820
原创 基于LightGBM-TPE算法对交通事故严重程度的分析与可视化
通过性能比较、特征重要性和可视化分析,作者不仅验证了LightGBM-TPE模型在预测交通事故严重性方面的优越性,还揭示了关键风险特征对事故致命性的影响机制。这些发现为城市规划者和交通管理部门提供了有价值的参考,有助于制定更有针对性的交通安全策略,特别是在高风险地理位置和时间段加强监管和控制。研究结果强调了数据可视化在理解复杂交通系统和指导政策制定中的重要作用,同时也为未来的研究方向提供了启发,例如进一步探讨制度激励对交通行为和事故演变的影响。
2025-04-22 16:23:52
1114
原创 研究夜间灯光数据在估计出行需求方面的潜力
以共享单车出行需求(BSTD)为例,探讨夜间灯光(NTL)数据在优化预测性能和替代土地利用因素方面的潜力。通过逐步回归确定自变量集合,并使用五种集成学习和决策树驱动的机器学习算法进行预测分析,得出以下结论:Adaboost和GBDT算法在预测效果上优于其他算法;引入NTL数据后,所有方法的预测性能均明显优化,GBDT在减少均方误差(MSE)方面表现最佳;在引入NTL数据后,土地利用因素在预测BSTD时不再起作用,NTL数据已涵盖土地利用因素的作用。
2025-04-21 18:51:37
1241
原创 共享单车出行规律与决定因素的空间交互分析——以北京六大区为例
原文:Spatial Interaction Analysis of Shared Bicycles Mobility Regularity and Determinants: A Case Study of Six Main Districts, Beijing这篇文章主要研究了北京六个主要城区共享单车的流动规律和影响因素,通过构建空间交互网络和使用指数随机图模型(ERGM)进行分析。
2025-04-19 17:06:16
1273
原创 SaTScan User指南(中文版)
参考:https://www.satscan.org/中文版全文见:https://download.csdn.net/download/weixin_44026026/90409077SaTScan是一个免费的软件, 分析空间, 时间和时空数据使用空间, 时间, 或时空扫描统计。 它被设计用于以下任何相互关联的目的:•对疾病进行地理监测, 以发现空间或时空疾病群集, 并查看它们是否具有统计学意义。•测试疾病是在空间上随机分布, 还是在时间上随机分布, 还是在空间和时间上随机分布。•评估疾病聚类警报
2025-02-20 18:06:47
2995
原创 Applied Spatial Statistics(十三)带有空间平滑器的 GAM
本笔记本演示了如何向 GAM 添加空间平滑器以解释空间自相关。参数,可以改变空间平滑器的样式。
2024-12-31 17:03:49
958
原创 Applied Spatial Statistics(十二)使用 `mgcv` 包的广义加性模型 (GAM)
% RFormula:------在“参数系数:”部分,它列出了线性预测因子的系数(如果有)。这里我们有一个全局截距,等于 25.18,并且它是显著的。在“平滑项的近似显著性:”部分,它列出了每个平滑器的估计自由度 (edf) 和 F 统计量。对于“edf”:如果它接近 1,则表示关系是线性的。2 的 edf 相当于二次曲线,依此类推,更高的 edf 描述的曲线更弯曲。在这种情况下,价格与 mpg 几乎是线性的,但 rpm 与 mpg 是最非线性的。
2024-12-31 16:38:36
1893
原创 Applied Spatial Statistics(十一)多级模型 Multi-level models(可变截距)
这是一个如何使用 python 和pymer4包拟合 MLM 模型的示例。Pymer4 是 R 中著名的lme4包的 python 版本,其文档可在以下位置找到:https://eshinjolly.com/pymer4/
2024-11-25 22:54:33
1103
原创 Applied Spatial Statistics(十)多级模型 Multi-level models(变化的截距和斜率)
我们还可以看到随机效应的分布,它们应该是从多元正态分布中得出的,截距的方差为 119.701,pct_bach 的方差为 0.076,相关性为 -0.641。负相关表示,当截距较大时,各州的斜率较小(较平坦)。但是,如果任何置信区间包含零,则它在统计学上不显著。如果固定效应不显著,则意味着它对因变量没有全局影响。但是,如果任何置信区间包含零,则它在统计学上不显著。如果固定效应不显著,则意味着它对因变量没有全局影响。如果随机效应不显著,则意味着各组之间没有差异。如果随机效应不显著,则意味着各组之间没有差异。
2024-11-25 22:52:54
1175
原创 Applied Spatial Statistics(九)GWR示例
这是一个基本的示例笔记本,演示了如何使用开源“mgwr”包在 Python 中校准 GWR(Fotheringham 等人,2002)模型。例如,您可以发现,尽管我们在回归系数中看到了这种模式,但 PctBlack 和 PctBach 之间的关联实际上并不显著。局部估计值可以从“gwr_results.params”中获得,它返回一个 n x p 数组,其中 p 是模型中的预测变量的数量(包括截距)。我们将使用佐治亚州的一个示例数据集,以下是数据中的一些变量。现在让我们检查一下 GWR 模型的残差。
2024-10-17 19:26:33
1686
原创 Applied Spatial Statistics(八):GWR 和 MGWR 示例
我们经常会观察到 GWR 模型的残差具有较低的 Moran’s I 值,这表明已考虑了空间结构。局部截距是一种内在背景效应,例如,表明有多少影响可以归因于“位置”。在 GWR 或 MGWR 中,我们经常建议对独立变量和因变量进行标准化。中获得,它返回一个 n x p 数组,其中 p 是模型中的预测变量的数量(包括截距)。这种方法的好处是,获得的系数变得“无单位”,允许跨变量和位置比较变量重要性。这是一个基本示例笔记本,演示了如何校准 GWR 或 MGWR 模型。现在让我们检查一下 GWR 模型的残差。
2024-08-21 15:57:16
2148
原创 Applied Spatial Statistics(七):Python 中的空间回归
本笔记本演示了如何使用 pysal 的spreg库拟合空间滞后模型和空间误差模型。
2024-06-23 16:25:50
2284
原创 Applied Spatial Statistics(六)线性回归 II(模型选择)
我们可以看到,对 mpg 进行对数变换后,残差图看起来更好,并且残差比之前的模型更服从正态分布。由于非线性很强,我们可能会想到对变量进行变换。让我们尝试记录因变量 mpg。mpg ~ 截距 + 重量 + model_year。这里我尝试了逐步进行。检查 VIF,全部 < 10。我们可以看到事情正在变得更好。检查残差图:发现很强的非线性。一些基本的探索性可视化。让我们直接获取数字列。
2024-05-19 15:36:07
1359
1
原创 Applied Spatial Statistics(五)线性回归 I
b0 = 10#b1 = 4线性回归结果总结yR-squared:0.944OLS0.9441.678e+040.0019:25:57-1394.31000AIC:2793.998BIC:2802.1nonrobustcoefstd errtP>|t|[0.0250.975]const9.93720.031321.2280.0009.8769.998x14.02510.031129.5410.0003.9644.0861.6471.9240.4391.6710.098。
2024-05-12 00:24:04
1203
java学习:01.设计模式.md
2024-01-22
java学习:索引.md
2024-01-22
01.JavaWeb入门.md
2024-01-22
02.SSM框架之Mybatis.md
2024-01-22
03.Spring入门.md
2024-01-22
04.SpringMVC.md
2024-01-22
05.SSM整合.md
2024-01-22
06.SpringBoot.md
2024-01-22
07.SpringCloud.md
2024-01-22
08.如何分析开源项目.md
2024-01-22
vue面试题面试集锦01.md
2024-01-22
java面经文档、技术要点或面试编程题资源
2024-01-22
网页版拳皇KOF-practice
2024-01-27
自然语言处理学习笔记nlp-tutorial
2024-01-27
程序员简历模板,简洁明了,逻辑结构清晰
2024-01-26
2020年美赛D题2020-ICM-Problem-D
2024-01-26
遗传算法求解最优解最大值项目.zip
2024-01-26
第16届智能车规则.pdf
2024-01-22
蓝桥杯标准模板.zip
2024-01-22
机器学习绘图模板ppt
2025-05-26
SaTScan用户指南中文版
2025-02-20
GeoHD - 一种用于智慧城市热点探测的Python工具箱
2025-02-20
铁路轨道不平顺分析与预测(完整数据与代码)
2024-01-27
高等路基设计表.xlsx
2024-03-23
土方计算表-用于土木工程项目中的土地移动量计算.xlsx
2024-03-23
土石方数量计算表.xlsx
2024-03-23
直线、曲线及转角表.xlsx
2024-03-23
逐桩坐标表-用于记录和存档工程项目中的详细地理位置信息.xlsx
2024-03-23
逐桩坐标表曲线段 方位角.xlsx
2024-03-23
逐桩坐标表直线段.xlsx
2024-03-23
纵断面-记录和计算工程项目中特定区域的纵断面特性.xlsx
2024-03-23
大创经验分享&项目资源&代码程序资源
2024-01-27
ACM/NOI/CSP比赛经验分享&代码程序资源:深度优先搜索
2024-01-27
大创经验分享&项目资源&代码程序资源:模型车牌生成器
2024-01-27
图像风格迁移研究数据集,提供一幅画将任意一张照片转化成这个风格
2024-01-27
电赛历年试题&经验分享&代码程序资源:2020年电赛A题代码
2024-01-27
MySQL-Notes学习笔记
2024-01-27
该方案作为一套多功能的后台框架模板,适用于绝大部分的后台管理系统开发 基于 Vue3 + pinia + typescript
2024-01-27
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅