自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

May the Force be with you

面向github编程爱好者

  • 博客(380)
  • 资源 (6)
  • 收藏
  • 关注

原创 GeoHD - 一种用于智慧城市热点探测的Python工具箱

在城市数据分析领域,研究对象的空间分布通常呈现出不均匀性,具有明显的空间异质性。密度较高的点数据往往代表着区域内事件的热点。因此,城市区域内热点的探测成为了城市研究的一个焦点话题,对于规划者、研究人员以及管理部门具有重要的价值。以犯罪热点的探测为例,通过对城市犯罪历史数据的分析可以揭示出犯罪活动发生的原因,进而有助于相关管理部门制定更加有效的犯罪预防策略。在过去的研究中,已经有多种经典的聚类算法或热点分析方法被应用于城市热点探测,比如Getis-Ord空间统计、k均值聚类以及核密度分析等。

2025-02-20 18:52:08 1809

原创 基于MATLAB的列车防护曲线组合步长算法分析与仿真验证

基于MATLAB的列车防护曲线组合步长算法分析与仿真验证说明:本文即本人城市轨道交通控制课程的课程设计,参考了一些论文,并提出了一些创新(算法精度的比较部分),附有个人编写的MATLAB代码,可能会有一些小错误,欢迎大家交流!列控系统中,只要与列车运行安全有关的问题,ATP都要进行防护。然而,运行安全的主要问题是列车运行速度的防护,故而经常将ATP子系统也称为“速度防护”或“超速防护”系统。所以,对车载ATP系统模型进行研究,重点在于研究ATP超速防护曲线算法。列车超速防护曲线主要是按照取步长的方式通过

2021-06-16 00:22:23 4968 12

原创 AI 的“诚实”指南:一文详解 Conformal Prediction (共形预测) 与 Split Conformal

假设我们有一组随机变量Z1Z2ZnZ1​Z2​Zn​(其中ZiXiYiZi​Xi​Yi​如果我们要对这一组变量的联合分布进行全排列,而排列后的联合概率分布保持不变,那么这组变量就是可交换的。通俗地说,数据的顺序不重要。最常见的可交换数据就是i.i.d. (独立同分布)数据。但可交换性的范围比 i.i.d. 更广(例如无放回抽样也是可交换的)。点预测是不可靠的:必须构建预测区间来量化不确定性。Split Conformal 是首选。

2026-01-22 17:15:09 908

原创 论文深度解析:基于大语言模型的城市公园多维度感知解码与公平性提升

本文针对城市公园感知测量的精细化不足与公平性评估缺口,提出了一套融合社交媒体数据与大语言模型(LLM)的创新分析框架。通过领域适配微调开发的Park-Perception-LLM模型,实现了对感知可达性、可用性、吸引力三大核心维度83%-91%的高精度分类。将该感知指标创新性地融入增强两步浮动集水区法(E2SFCA),以香港高密度城市为案例,系统揭示了公园质量与数量的空间不平等及错配模式。借助多元回归模型,深入挖掘了公园内部特征、宏观建成环境、微观街道景观及时间因素对感知的影响机制。

2026-01-12 16:19:27 751

原创 论文深度解析:多模态大模型在城市骑行环境感知模拟中的潜力探索

随着全球对环境、社会、治理(ESG)原则的重视日益提升,城市骑行凭借其环境友好、有益健康、促进社交等多重优势,已成为可持续交通系统的核心组成部分(United Nations General Assembly, 2022)。然而,要通过提升骑行率实现相关政策目标,关键在于深入理解影响个体骑行决策的核心因素——骑行环境感知。人类对城市骑行环境的主观感知,是连接客观环境与个体出行行为的关键中介(Blitz, 2021),直接决定了骑行行为的意愿与频率。

2026-01-12 01:09:46 823

原创 论文深度解析:考虑空间异质性的出租车超速频率建模(GWNBRg方法)

本文聚焦城市出租车超速问题,针对传统模型忽略空间异质性的缺陷,提出了两种地理加权负二项回归模型(GWNBR和GWNBRg),结合GPS轨迹数据与地理信息数据,系统分析了出租车超速频率的影响因素及空间分布特征。研究以成都一环路内区域为案例,验证了模型的有效性,为精准制定交通限速干预策略提供了理论支撑和实践指导。核心贡献:图4 基于隐马尔可夫模型和维特比算法的地图匹配流程:通过状态转移概率和观测概率,从候选路径中筛选最优匹配结果,提升GPS轨迹与道路网络的匹配精度。最终筛选13个解释变量,分为4大类,描述性统计

2026-01-12 00:51:47 784

原创 GeoShapley论文详细解析:一种度量机器学习模型空间效应的博弈论方法

原文:GeoShapley: A Game Theory Approach to Measuring Spatial Effects in Machine Learning Models随着机器学习(ML)和人工智能(AI)在地理空间现象建模中的广泛应用,其在处理海量异质数据、捕捉复杂结构方面的优势日益凸显。然而,机器学习模型的“黑箱”特性严重阻碍了其在科学发现中的应用——地理学家更关注模型的可解释性,以理解地理空间现象背后的关系和过程。可解释人工智能(XAI)的发展为解决这一问题提供了思路,其中SHAP(

2026-01-11 01:36:49 1020

原创 GeoConformal Prediction——空间预测不确定性量化的通用框架

空间预测是地理学核心任务之一,在自然资源管理、城市规划、环境监测等领域发挥着关键作用。随着地理空间人工智能(GeoAI)的快速发展,现有研究多聚焦于提升预测精度,却忽视了对预测不确定性的可靠量化。而不确定性评估是增强模型可信度、支撑负责任决策的核心前提。

2026-01-11 01:26:47 29

原创 [论文解读] GeoXCP详解

GeoXCP 是一种后处理(Post-hoc)框架,它不需要你修改原有的 AI 模型结构。它用代理模型解决了解释器没有真值的问题。它用非一致性评分量化了模型的认知偏差。它用地理加权实现了对空间异质性的自适应调整。对于从事 GIS、城市计算、环境科学的同学来说,GeoXCP 是从“由数据驱动”迈向“可信 AI”的重要一步。下次当模型告诉你某个结论时,记得用 GeoXCP 问一句:“你确定吗?确定的范围是多少?

2026-01-11 00:34:55 50

原创 GeoXCP:可解释人工智能中空间解释的不确定性量化

GeoXCP: uncertainty quantification of spatial explanations in explainable AI提出基于保形预测(conformal prediction)的不确定性量化框架——地理空间解释保形预测(GeoXCP),将空间依赖纳入建模过程,生成具有校准不确定性估计的空间自适应解释。通过大量模拟实验和真实世界数据集验证,GeoXCP在不同地理空间场景中能提供可靠解释并有效量化不确定性,推动可解释地理空间机器学习的发展,帮助决策者评估模型驱动洞察的可信度。

2026-01-07 19:27:27 76

原创 城市韧性与交通基础设施系统耦合协调度的时空演变及影响因素

UR与TI发展水平均呈动态增长态势;二者耦合协调度持续上升(均值从0.3012升至0.4018),但整体仍处于“轻度失衡”阶段;耦合协调度空间分布不均,济南、青岛水平显著领先;指标层障碍因素存在城市异质性,维度层中经济韧性与交通基础设施建设水平是主要制约因素。

2025-12-12 22:09:12 944

原创 以出行需求驱动的城市服务设施空间失衡识别与优化

本文聚焦城市化加速背景下城市服务设施供需失衡问题,提出了一套以出行需求为导向的空间失衡识别与优化方法,并以哈尔滨餐饮设施为案例进行实证验证,为城市规划资源配置提供了科学工具。欢迎交流与引用!

2025-12-12 02:40:49 768

原创 增强城市数据分析:多密度区域的自适应分区框架

在城市科学研究中,,无论是犯罪预防、交通规划还是公共服务布局,区域划分的合理性直接决定后续模型精度与结论可靠性。正是这些问题,促使研究团队设计一套能适配多密度数据、跨场景通用且能缓解MAUP影响的区域划分框架。

2025-11-22 17:19:03 1050

原创 基于人眼视角的建成环境对地铁-自行车一体化的非线性影响

地铁-自行车一体化是缓解气候变化、推动城市可持续交通转型的重要策略,现有研究已证实社区层面建成环境(如可达性、城市密度、土地利用混合度、自行车基础设施 proximity)对骑行行为的影响,但人眼视角建成环境(个体在街道层面感知的物理与视觉特征)的作用尚未被充分探索。数据类型来源与时间处理方法核心变量自行车共享数据苏州有桩自行车,2021.1.4-1.101. 筛选标准:站点名称含“地铁”或距离地铁站≤50米(参考Lin et al., 2019);2. 排除地铁停运时段(1-6点);

2025-11-22 17:08:52 1051

原创 基于中国深圳无桩共享单车数据的出行目的推断与时空活动模式挖掘

建立映射关系:基于表1,将9类骑行目的(家庭、工作、换乘等)与对应的POI类别关联,明确“目的-POI”对应规则;划定目的地范围:以骑行落点为中心,定义“最大步行半径”,范围内的POI作为“候选POI”(即用户可能前往的目的地);计算POI吸引力:用重力模型(基础/改进),结合距离、时间、环境等因素,计算每个候选POI对用户的吸引力;推断骑行目的:用贝叶斯规则,基于POI吸引力计算用户访问各候选POI的概率,概率最高的POI对应的目的即为“推断结果”。

2025-11-13 23:29:41 1015

原创 【雅思备考】雅思写作笔记

需要两方面讨论,不能只偏向一方,和讨论型相似(比较型的结论都是偏向于哪方面的,尽管他有好处,但是坏处大于好处|尽管他有坏处但是他的好处大于坏处,两个观点不是平均的)抓住主体关键词,利用3C分解法,拆分出来儿童的两个特点,不成熟、健康的成长环境,形成一边倒的态度方向,有害要禁止,agree的态度。因为是第一视角,所以在总观点句不可少的就是第一视角词汇的运用,在分论点也可以使用,但是为了不重复,在分论点句可以做省略。C1-2 没有自制力-产生犯罪(细节,做什么事情)this/that/these/those;

2025-10-31 23:10:51 880

原创 共享自行车与电动共享自行车使用中建成环境影响的对比研究:基于合肥数据的时空机器学习分析

双重优势整合:首次将 XGBoost 的非线性捕捉能力与 GTWR 的时空异质性刻画能力结合,解决了“单一模型无法同时处理非线性与时空变化”的行业痛点;本地化建模逻辑:通过“时空邻居加权”实现“每个数据点对应一个局部模型”,而非全局统一模型,更贴合共享微出行“时空动态变化”的实际特征,为后续政策建议提供更精准的量化依据。

2025-10-31 21:12:22 792

转载 [转]交通大模型与时序大模型整理【共15篇工作】

这篇论文提出了TransGPT,一个针对交通领域的新型多模态大型语言模型(LLM),旨在解决智能交通系统(ITS)中自然语言处理(NLP)面临的挑战。这些挑战包括领域特定的知识和数据,以及多模态输入和输出的处理。TransGPT包含两个独立的变体:针对单模态数据的TransGPT-SM和针对多模态数据的TransGPT-MM。

2025-09-06 16:28:22 273

原创 面向空间可变尺度的城市时空预测研究

论文针对城市位置服务(如网约车)中的时空(Spatio-Temporal, ST)预测问题,指出现有ST模型的核心缺陷:需预先划分区域,导致两类问题——(1)不同场景需多尺度/多区域模型,成本高昂;(2)多模型预测结果冲突(即可修改区域单元问题(Modifiable Areal Unit Problem, MAUP)为解决上述问题,论文提出One4All-ST框架高效多尺度表示学习:设计含分层空间建模和尺度归一化模块的ST网络,平衡多尺度学习效率与公平性;预测一致性优化:通过动态规划。

2025-08-26 21:07:07 692

原创 考虑地理空间异质性的集成空间预测方法

本文提出的GSH-EL方法通过准确表达空间异质性,显著提高了空间预测模型的性能。实验结果表明,该方法在多个实际数据集上均优于现有的集成学习策略。尽管存在一些局限性,但本文的研究为地理空间预测领域提供了一种新的思路和方法,未来的研究将进一步优化该方法,并拓展其应用范围。

2025-07-09 13:00:00 1385

原创 基于图深度学习的GeoAI增强空间网络社区发现

定义图嵌入是一种强大的表示学习技术,通过将节点属性和拓扑图结构结合到向量中,降低数据的维度。利用向量中捕获的信息,节点聚类可以自然地从图嵌入中扩展出来。优势在各种场景中,利用属性信息以及图结构可以为节点聚类带来更好的结果。深度学习算法,包括基于随机游走的算法和基于GCN的算法,在图嵌入任务中都表现出了良好的性能。图的定义图GVEG = (V, E)GVE由节点集合Vv1vnVv1​vn​(例如地点和区域)和边集合EEE组成,其中∣V∣n|V| = n∣V。

2025-07-07 13:00:00 1510

原创 基于图神经网络的多Agent深度强化学习优化路网大规模车队管理

在网约车服务中,车队管理的核心目标是实现供需平衡,确保车辆在正确的时间和地点可用。这需要一个智能且及时的动态资源重新分配策略。本文将这一问题形式化,并提出了一种基于多智能体强化学习和图神经网络的解决方案,旨在最大化订单响应率,即已服务订单数与总订单数的比值。这一指标相比传统的商品交易总量(GMV)更能直接反映客户满意度和公司收入。模拟器是本文提出的车队管理策略的核心实验平台,它旨在精确模拟现实世界的网约车运营环境。

2025-07-02 10:00:00 691

原创 BikeshareGAN:基于卫星影像的无桩共享单车需求预测

无桩共享单车(Dockless Bike-Sharing, DBS)发展迅速,准确预测其停车需求对城市管理至关重要,但传统预测模型多基于回归方法,需大量精细地理信息系统(GIS)数据,收集成本高且在发展中国家难以获取。卫星图像包含丰富城市系统数据,作者假设生成对抗网络(GAN)能利用卫星图像有效预测DBS需求。基于回归和GAN的方法。( a )传统的回归模型需要细粒度的GIS数据,收集起来比较麻烦。( b )本文提出了一种基于卫星图像的直接预测方法。

2025-06-05 12:00:00 1296

原创 停泊式共享单车的出行需求与建筑环境之间的关联:来自美国 7 个城市的证据

原文:Tang, Justin Hayse Chiwing G., et al. “The association between travel demand of docked bike-sharing and the built environment: Evidence from seven US cities.” Sustainable Cities and Society 106 (2024): 105325.

2025-04-28 23:50:44 1358

原创 城市群出行需求的时空分形

原文:He, Zhengbing. “Spatial-temporal fractal of urban agglomeration travel demand.” Physica A: Statistical Mechanics and its Applications 549 (2020): 124503.

2025-04-28 21:23:19 1773

原创 描述城市出行需求模式的复杂网络视角:大规模起点-目的地需求网络的图论分析

研究背景:全球城市人口增长导致对活动和出行需求增加,城市面临压力。传统的基于活动和代理的出行需求模型虽有助于理解出行选择机制,但出行需求通常未从网络角度分析。而交通网络建模进展多集中在供给侧,如日内平衡和日间交通流演变等。研究目的和方法:提出一种基于复杂网络的跨学科定量框架,通过分析起讫点需求网络的统计特性来理解和刻画城市出行需求模式。选取芝加哥和墨尔本两个城市的出行需求模式进行比较,运用复杂网络理论中的图论分析方法。研究结果和结论:尽管两城市在地形和城市结构上存在差异,但出行需求网络展现出相似的性质。

2025-04-22 21:18:10 860

原创 从 GPS 数据中捕捉城市休闲热点:空间异质性视角下的新框架

原文:Capturing urban recreational hotspots from GPS data: A new framework in the lens of spatial heterogeneity。

2025-04-22 19:46:42 820

原创 基于LightGBM-TPE算法对交通事故严重程度的分析与可视化

通过性能比较、特征重要性和可视化分析,作者不仅验证了LightGBM-TPE模型在预测交通事故严重性方面的优越性,还揭示了关键风险特征对事故致命性的影响机制。这些发现为城市规划者和交通管理部门提供了有价值的参考,有助于制定更有针对性的交通安全策略,特别是在高风险地理位置和时间段加强监管和控制。研究结果强调了数据可视化在理解复杂交通系统和指导政策制定中的重要作用,同时也为未来的研究方向提供了启发,例如进一步探讨制度激励对交通行为和事故演变的影响。

2025-04-22 16:23:52 1114

原创 研究夜间灯光数据在估计出行需求方面的潜力

以共享单车出行需求(BSTD)为例,探讨夜间灯光(NTL)数据在优化预测性能和替代土地利用因素方面的潜力。通过逐步回归确定自变量集合,并使用五种集成学习和决策树驱动的机器学习算法进行预测分析,得出以下结论:Adaboost和GBDT算法在预测效果上优于其他算法;引入NTL数据后,所有方法的预测性能均明显优化,GBDT在减少均方误差(MSE)方面表现最佳;在引入NTL数据后,土地利用因素在预测BSTD时不再起作用,NTL数据已涵盖土地利用因素的作用。

2025-04-21 18:51:37 1241

原创 共享单车出行规律与决定因素的空间交互分析——以北京六大区为例

原文:Spatial Interaction Analysis of Shared Bicycles Mobility Regularity and Determinants: A Case Study of Six Main Districts, Beijing这篇文章主要研究了北京六个主要城区共享单车的流动规律和影响因素,通过构建空间交互网络和使用指数随机图模型(ERGM)进行分析。

2025-04-19 17:06:16 1273

原创 SaTScan User指南(中文版)

参考:https://www.satscan.org/中文版全文见:https://download.csdn.net/download/weixin_44026026/90409077SaTScan是一个免费的软件, 分析空间, 时间和时空数据使用空间, 时间, 或时空扫描统计。 它被设计用于以下任何相互关联的目的:•对疾病进行地理监测, 以发现空间或时空疾病群集, 并查看它们是否具有统计学意义。•测试疾病是在空间上随机分布, 还是在时间上随机分布, 还是在空间和时间上随机分布。•评估疾病聚类警报

2025-02-20 18:06:47 2995

原创 Applied Spatial Statistics(十三)带有空间平滑器的 GAM

本笔记本演示了如何向 GAM 添加空间平滑器以解释空间自相关。参数,可以改变空间平滑器的样式。

2024-12-31 17:03:49 958

原创 Applied Spatial Statistics(十二)使用 `mgcv` 包的广义加性模型 (GAM)

% RFormula:------在“参数系数:”部分,它列出了线性预测因子的系数(如果有)。这里我们有一个全局截距,等于 25.18,并且它是显著的。在“平滑项的近似显著性:”部分,它列出了每个平滑器的估计自由度 (edf) 和 F 统计量。对于“edf”:如果它接近 1,则表示关系是线性的。2 的 edf 相当于二次曲线,依此类推,更高的 edf 描述的曲线更弯曲。在这种情况下,价格与 mpg 几乎是线性的,但 rpm 与 mpg 是最非线性的。

2024-12-31 16:38:36 1893

原创 Applied Spatial Statistics(十一)多级模型 Multi-level models(可变截距)

这是一个如何使用 python 和pymer4包拟合 MLM 模型的示例。Pymer4 是 R 中著名的lme4包的 python 版本,其文档可在以下位置找到:https://eshinjolly.com/pymer4/

2024-11-25 22:54:33 1103

原创 Applied Spatial Statistics(十)多级模型 Multi-level models(变化的截距和斜率)

我们还可以看到随机效应的分布,它们应该是从多元正态分布中得出的,截距的方差为 119.701,pct_bach 的方差为 0.076,相关性为 -0.641。负相关表示,当截距较大时,各州的斜率较小(较平坦)。但是,如果任何置信区间包含零,则它在统计学上不显著。如果固定效应不显著,则意味着它对因变量没有全局影响。但是,如果任何置信区间包含零,则它在统计学上不显著。如果固定效应不显著,则意味着它对因变量没有全局影响。如果随机效应不显著,则意味着各组之间没有差异。如果随机效应不显著,则意味着各组之间没有差异。

2024-11-25 22:52:54 1175

原创 Applied Spatial Statistics(九)GWR示例

这是一个基本的示例笔记本,演示了如何使用开源“mgwr”包在 Python 中校准 GWR(Fotheringham 等人,2002)模型。例如,您可以发现,尽管我们在回归系数中看到了这种模式,但 PctBlack 和 PctBach 之间的关联实际上并不显著。局部估计值可以从“gwr_results.params”中获得,它返回一个 n x p 数组,其中 p 是模型中的预测变量的数量(包括截距)。我们将使用佐治亚州的一个示例数据集,以下是数据中的一些变量。现在让我们检查一下 GWR 模型的残差。

2024-10-17 19:26:33 1686

原创 Applied Spatial Statistics(八):GWR 和 MGWR 示例

我们经常会观察到 GWR 模型的残差具有较低的 Moran’s I 值,这表明已考虑了空间结构。局部截距是一种内在背景效应,例如,表明有多少影响可以归因于“位置”。在 GWR 或 MGWR 中,我们经常建议对独立变量和因变量进行标准化。中获得,它返回一个 n x p 数组,其中 p 是模型中的预测变量的数量(包括截距)。这种方法的好处是,获得的系数变得“无单位”,允许跨变量和位置比较变量重要性。这是一个基本示例笔记本,演示了如何校准 GWR 或 MGWR 模型。现在让我们检查一下 GWR 模型的残差。

2024-08-21 15:57:16 2148

原创 Applied Spatial Statistics(七):Python 中的空间回归

本笔记本演示了如何使用 pysal 的spreg库拟合空间滞后模型和空间误差模型。

2024-06-23 16:25:50 2284

原创 Applied Spatial Statistics(六)线性回归 II(模型选择)

我们可以看到,对 mpg 进行对数变换后,残差图看起来更好,并且残差比之前的模型更服从正态分布。由于非线性很强,我们可能会想到对变量进行变换。让我们尝试记录因变量 mpg。mpg ~ 截距 + 重量 + model_year。这里我尝试了逐步进行。检查 VIF,全部 < 10。我们可以看到事情正在变得更好。检查残差图:发现很强的非线性。一些基本的探索性可视化。让我们直接获取数字列。

2024-05-19 15:36:07 1359 1

原创 Applied Spatial Statistics(五)线性回归 I

b0 = 10#b1 = 4线性回归结果总结yR-squared:0.944OLS0.9441.678e+040.0019:25:57-1394.31000AIC:2793.998BIC:2802.1nonrobustcoefstd errtP>|t|[0.0250.975]const9.93720.031321.2280.0009.8769.998x14.02510.031129.5410.0003.9644.0861.6471.9240.4391.6710.098。

2024-05-12 00:24:04 1203

java学习:01.设计模式.md

Java是一种高级的面向对象的程序设计语言,它具有广泛的应用和强大的跨平台特性。Java语言于1995年由Sun公司推出,由Java之父詹姆斯高斯林设计。Java的设计目标是提供一种易学易用、功能强大的编程语言,使开发人员能够快速开发可靠的应用程序。 Java的跨平台特性是其最显著的特点之一。Java程序可以在任何计算机、操作系统和支持Java的硬件设备上运行。这意味着开发人员只需编写一次代码,就可以在多个平台上运行,大大提高了开发效率和应用程序的可移植性。 Java的应用领域非常广泛。它被广泛用于开发Web应用程序、企业级应用程序、移动应用程序、嵌入式系统和消费类电子产品等。Java提供了丰富的类库和工具,使开发人员能够快速构建各种类型的应用程序。 Java语言具有面向对象的特性,包括封装、继承和多态。这些特性使得Java程序具有良好的可维护性、可扩展性和代码重用性。同时,Java还提供了自动内存管理和异常处理机制,使开发人员能够更轻松地编写高质量的代码。 总之,Java是一种功能强大、易学易用、具有广泛应用和强大跨平台特性的编程语言。它的设计目标是提供一种高效的开发工具,使

2024-01-22

java学习:索引.md

Java是一种高级的面向对象的程序设计语言,它具有广泛的应用和强大的跨平台特性。Java语言于1995年由Sun公司推出,由Java之父詹姆斯高斯林设计。Java的设计目标是提供一种易学易用、功能强大的编程语言,使开发人员能够快速开发可靠的应用程序。 Java的跨平台特性是其最显著的特点之一。Java程序可以在任何计算机、操作系统和支持Java的硬件设备上运行。这意味着开发人员只需编写一次代码,就可以在多个平台上运行,大大提高了开发效率和应用程序的可移植性。 Java的应用领域非常广泛。它被广泛用于开发Web应用程序、企业级应用程序、移动应用程序、嵌入式系统和消费类电子产品等。Java提供了丰富的类库和工具,使开发人员能够快速构建各种类型的应用程序。 Java语言具有面向对象的特性,包括封装、继承和多态。这些特性使得Java程序具有良好的可维护性、可扩展性和代码重用性。同时,Java还提供了自动内存管理和异常处理机制,使开发人员能够更轻松地编写高质量的代码。 总之,Java是一种功能强大、易学易用、具有广泛应用和强大跨平台特性的编程语言。它的设计目标是提供一种高效的开发工具,使

2024-01-22

01.JavaWeb入门.md

Java是一种高级的面向对象的程序设计语言,它具有广泛的应用和强大的跨平台特性。Java语言于1995年由Sun公司推出,由Java之父詹姆斯高斯林设计。Java的设计目标是提供一种易学易用、功能强大的编程语言,使开发人员能够快速开发可靠的应用程序。 Java的跨平台特性是其最显著的特点之一。Java程序可以在任何计算机、操作系统和支持Java的硬件设备上运行。这意味着开发人员只需编写一次代码,就可以在多个平台上运行,大大提高了开发效率和应用程序的可移植性。 Java的应用领域非常广泛。它被广泛用于开发Web应用程序、企业级应用程序、移动应用程序、嵌入式系统和消费类电子产品等。Java提供了丰富的类库和工具,使开发人员能够快速构建各种类型的应用程序。 Java语言具有面向对象的特性,包括封装、继承和多态。这些特性使得Java程序具有良好的可维护性、可扩展性和代码重用性。同时,Java还提供了自动内存管理和异常处理机制,使开发人员能够更轻松地编写高质量的代码。 总之,Java是一种功能强大、易学易用、具有广泛应用和强大跨平台特性的编程语言。它的设计目标是提供一种高效的开发工具,使

2024-01-22

02.SSM框架之Mybatis.md

Java是一种高级的面向对象的程序设计语言,它具有广泛的应用和强大的跨平台特性。Java语言于1995年由Sun公司推出,由Java之父詹姆斯高斯林设计。Java的设计目标是提供一种易学易用、功能强大的编程语言,使开发人员能够快速开发可靠的应用程序。 Java的跨平台特性是其最显著的特点之一。Java程序可以在任何计算机、操作系统和支持Java的硬件设备上运行。这意味着开发人员只需编写一次代码,就可以在多个平台上运行,大大提高了开发效率和应用程序的可移植性。 Java的应用领域非常广泛。它被广泛用于开发Web应用程序、企业级应用程序、移动应用程序、嵌入式系统和消费类电子产品等。Java提供了丰富的类库和工具,使开发人员能够快速构建各种类型的应用程序。 Java语言具有面向对象的特性,包括封装、继承和多态。这些特性使得Java程序具有良好的可维护性、可扩展性和代码重用性。同时,Java还提供了自动内存管理和异常处理机制,使开发人员能够更轻松地编写高质量的代码。 总之,Java是一种功能强大、易学易用、具有广泛应用和强大跨平台特性的编程语言。它的设计目标是提供一种高效的开发工具,使

2024-01-22

03.Spring入门.md

Java是一种高级的面向对象的程序设计语言,它具有广泛的应用和强大的跨平台特性。Java语言于1995年由Sun公司推出,由Java之父詹姆斯高斯林设计。Java的设计目标是提供一种易学易用、功能强大的编程语言,使开发人员能够快速开发可靠的应用程序。 Java的跨平台特性是其最显著的特点之一。Java程序可以在任何计算机、操作系统和支持Java的硬件设备上运行。这意味着开发人员只需编写一次代码,就可以在多个平台上运行,大大提高了开发效率和应用程序的可移植性。 Java的应用领域非常广泛。它被广泛用于开发Web应用程序、企业级应用程序、移动应用程序、嵌入式系统和消费类电子产品等。Java提供了丰富的类库和工具,使开发人员能够快速构建各种类型的应用程序。 Java语言具有面向对象的特性,包括封装、继承和多态。这些特性使得Java程序具有良好的可维护性、可扩展性和代码重用性。同时,Java还提供了自动内存管理和异常处理机制,使开发人员能够更轻松地编写高质量的代码。 总之,Java是一种功能强大、易学易用、具有广泛应用和强大跨平台特性的编程语言。它的设计目标是提供一种高效的开发工具,使

2024-01-22

04.SpringMVC.md

Java是一种高级的面向对象的程序设计语言,它具有广泛的应用和强大的跨平台特性。Java语言于1995年由Sun公司推出,由Java之父詹姆斯高斯林设计。Java的设计目标是提供一种易学易用、功能强大的编程语言,使开发人员能够快速开发可靠的应用程序。 Java的跨平台特性是其最显著的特点之一。Java程序可以在任何计算机、操作系统和支持Java的硬件设备上运行。这意味着开发人员只需编写一次代码,就可以在多个平台上运行,大大提高了开发效率和应用程序的可移植性。 Java的应用领域非常广泛。它被广泛用于开发Web应用程序、企业级应用程序、移动应用程序、嵌入式系统和消费类电子产品等。Java提供了丰富的类库和工具,使开发人员能够快速构建各种类型的应用程序。 Java语言具有面向对象的特性,包括封装、继承和多态。这些特性使得Java程序具有良好的可维护性、可扩展性和代码重用性。同时,Java还提供了自动内存管理和异常处理机制,使开发人员能够更轻松地编写高质量的代码。 总之,Java是一种功能强大、易学易用、具有广泛应用和强大跨平台特性的编程语言。它的设计目标是提供一种高效的开发工具,使

2024-01-22

05.SSM整合.md

Java是一种高级的面向对象的程序设计语言,它具有广泛的应用和强大的跨平台特性。Java语言于1995年由Sun公司推出,由Java之父詹姆斯高斯林设计。Java的设计目标是提供一种易学易用、功能强大的编程语言,使开发人员能够快速开发可靠的应用程序。 Java的跨平台特性是其最显著的特点之一。Java程序可以在任何计算机、操作系统和支持Java的硬件设备上运行。这意味着开发人员只需编写一次代码,就可以在多个平台上运行,大大提高了开发效率和应用程序的可移植性。 Java的应用领域非常广泛。它被广泛用于开发Web应用程序、企业级应用程序、移动应用程序、嵌入式系统和消费类电子产品等。Java提供了丰富的类库和工具,使开发人员能够快速构建各种类型的应用程序。 Java语言具有面向对象的特性,包括封装、继承和多态。这些特性使得Java程序具有良好的可维护性、可扩展性和代码重用性。同时,Java还提供了自动内存管理和异常处理机制,使开发人员能够更轻松地编写高质量的代码。 总之,Java是一种功能强大、易学易用、具有广泛应用和强大跨平台特性的编程语言。它的设计目标是提供一种高效的开发工具,使

2024-01-22

06.SpringBoot.md

Java是一种高级的面向对象的程序设计语言,它具有广泛的应用和强大的跨平台特性。Java语言于1995年由Sun公司推出,由Java之父詹姆斯高斯林设计。Java的设计目标是提供一种易学易用、功能强大的编程语言,使开发人员能够快速开发可靠的应用程序。 Java的跨平台特性是其最显著的特点之一。Java程序可以在任何计算机、操作系统和支持Java的硬件设备上运行。这意味着开发人员只需编写一次代码,就可以在多个平台上运行,大大提高了开发效率和应用程序的可移植性。 Java的应用领域非常广泛。它被广泛用于开发Web应用程序、企业级应用程序、移动应用程序、嵌入式系统和消费类电子产品等。Java提供了丰富的类库和工具,使开发人员能够快速构建各种类型的应用程序。 Java语言具有面向对象的特性,包括封装、继承和多态。这些特性使得Java程序具有良好的可维护性、可扩展性和代码重用性。同时,Java还提供了自动内存管理和异常处理机制,使开发人员能够更轻松地编写高质量的代码。 总之,Java是一种功能强大、易学易用、具有广泛应用和强大跨平台特性的编程语言。它的设计目标是提供一种高效的开发工具,使

2024-01-22

07.SpringCloud.md

Java是一种高级的面向对象的程序设计语言,它具有广泛的应用和强大的跨平台特性。Java语言于1995年由Sun公司推出,由Java之父詹姆斯高斯林设计。Java的设计目标是提供一种易学易用、功能强大的编程语言,使开发人员能够快速开发可靠的应用程序。 Java的跨平台特性是其最显著的特点之一。Java程序可以在任何计算机、操作系统和支持Java的硬件设备上运行。这意味着开发人员只需编写一次代码,就可以在多个平台上运行,大大提高了开发效率和应用程序的可移植性。 Java的应用领域非常广泛。它被广泛用于开发Web应用程序、企业级应用程序、移动应用程序、嵌入式系统和消费类电子产品等。Java提供了丰富的类库和工具,使开发人员能够快速构建各种类型的应用程序。 Java语言具有面向对象的特性,包括封装、继承和多态。这些特性使得Java程序具有良好的可维护性、可扩展性和代码重用性。同时,Java还提供了自动内存管理和异常处理机制,使开发人员能够更轻松地编写高质量的代码。 总之,Java是一种功能强大、易学易用、具有广泛应用和强大跨平台特性的编程语言。它的设计目标是提供一种高效的开发工具,使

2024-01-22

08.如何分析开源项目.md

Java是一种高级的面向对象的程序设计语言,它具有广泛的应用和强大的跨平台特性。Java语言于1995年由Sun公司推出,由Java之父詹姆斯高斯林设计。Java的设计目标是提供一种易学易用、功能强大的编程语言,使开发人员能够快速开发可靠的应用程序。 Java的跨平台特性是其最显著的特点之一。Java程序可以在任何计算机、操作系统和支持Java的硬件设备上运行。这意味着开发人员只需编写一次代码,就可以在多个平台上运行,大大提高了开发效率和应用程序的可移植性。 Java的应用领域非常广泛。它被广泛用于开发Web应用程序、企业级应用程序、移动应用程序、嵌入式系统和消费类电子产品等。Java提供了丰富的类库和工具,使开发人员能够快速构建各种类型的应用程序。 Java语言具有面向对象的特性,包括封装、继承和多态。这些特性使得Java程序具有良好的可维护性、可扩展性和代码重用性。同时,Java还提供了自动内存管理和异常处理机制,使开发人员能够更轻松地编写高质量的代码。 总之,Java是一种功能强大、易学易用、具有广泛应用和强大跨平台特性的编程语言。它的设计目标是提供一种高效的开发工具,使

2024-01-22

vue面试题面试集锦01.md

以下是关于Vue面试题的回答: 1. v-on可以监听多个方法,但是同一种事件类型的方法,vue-cli工程会报错。这是因为在Vue中,同一种事件类型只能绑定一个方法。如果需要绑定多个方法,可以使用一个方法来调用其他方法。 2. 在Vue中编写可复用的组件的思路是将组件的逻辑和样式封装在一个单独的.vue文件中。这个文件包含了组件的模板、样式和逻辑。通过使用Vue的组件系统,可以在其他地方多次使用这个组件。 3. MVVM是Model-View-ViewModel的缩写,是一种软件架构模式。在Vue中,M代表数据模型(Model),V代表视图(View),VM代表视图模型(ViewModel)。Vue通过数据绑定和响应式系统实现了数据模型和视图之间的自动同步。 4. Computed属性是Vue中的一个特性,它可以根据依赖的数据动态计算出一个新的值,并将这个值缓存起来。当依赖的数据发生变化时,Computed属性会重新计算并更新。这个特性可以用来处理一些需要根据数据动态计算的逻辑,例如根据输入框的值计算出一个结果。

2024-01-22

java面经文档、技术要点或面试编程题资源

Java是一种高级的面向对象的程序设计语言,它具有广泛的应用和强大的跨平台特性。Java语言于1995年由Sun公司推出,由Java之父詹姆斯高斯林设计。Java的设计目标是提供一种易学易用、功能强大的编程语言,使开发人员能够快速开发可靠的应用程序。 Java的跨平台特性是其最显著的特点之一。Java程序可以在任何计算机、操作系统和支持Java的硬件设备上运行。这意味着开发人员只需编写一次代码,就可以在多个平台上运行,大大提高了开发效率和应用程序的可移植性。 Java的应用领域非常广泛。它被广泛用于开发Web应用程序、企业级应用程序、移动应用程序、嵌入式系统和消费类电子产品等。Java提供了丰富的类库和工具,使开发人员能够快速构建各种类型的应用程序。 Java语言具有面向对象的特性,包括封装、继承和多态。这些特性使得Java程序具有良好的可维护性、可扩展性和代码重用性。同时,Java还提供了自动内存管理和异常处理机制,使开发人员能够更轻松地编写高质量的代码。 总之,Java是一种功能强大、易学易用、具有广泛应用和强大跨平台特性的编程语言。它的设计目标是提供一种高效的开发工具,使

2024-01-22

深度学习GAN相关毕业设计项目&写作技巧&答辩ppt

基于生成式对抗网络的图像风格迁移研究 答辩ppt

2024-01-27

网页版拳皇KOF-practice

实现了一个网页版本的简易拳皇 可以实现上下左右并进行攻击 具体内容请参考博客:https://yanyuchen.blog.csdn.net/article/details/124362600

2024-01-27

自然语言处理学习笔记nlp-tutorial

自然语言处理(Natural Language Processing,NLP)是计算机科学、人工智能和语言学领域的一个交叉学科,主要研究如何让计算机能够理解、处理、生成和模拟人类语言的能力,从而实现与人类进行自然对话的能力。通过自然语言处理技术,可以实现机器翻译、问答系统、情感分析、文本摘要等多种应用。随着深度学习技术的发展,人工神经网络和其他机器学习方法已经在自然语言处理领域取得了重要的进展。未来的发展方向包括更深入的语义理解、更好的对话系统、更广泛的跨语言处理和更强大的迁移学习技术。

2024-01-27

程序员简历模板,简洁明了,逻辑结构清晰

北京XXX java大数据工程师— 2013.4月-2015.12月1、负责实时流消息处理应用系统构建和实现在调研了kafka的优势和我们的具体需求之后,用kafka作为消费者,保证高吞吐处理消息,并持久化消息的同时供其它服务使用,进行了系统的设计和搭建使用。 本地日志保证消息不丢失,并通过记录游标滑动重复读取数据。使用storm 负责搭建消息处理架构,并完成基于业务的消息落地,提供后续的数据 统计分析实时和离线任务,诸如pv、uv等数据,为运营做决策网站用户行为埋点和基于js的日志收集器开发,定义接又和前端部门配合。主用go 2、hadoop集群搭建和数据分析处理2、基于CDH的集群搭建工作,后期进行维护编写MapReduce程序,能将复杂工作逻辑化,尽最大能力发挥大数据应用的特点, 对程序高要求,监控自己程序运行情况,使用内存合理,注重增量

2024-01-26

2020年美赛D题2020-ICM-Problem-D

美国大学生数学建模竞赛(MCM/ICM),简称“美赛”,由美国数学及其应用联合会主办,是最高的国际性数学建模竞赛,也是世界范围内最具影响力的数学建模竞赛,一般也指数学建模竞赛。赛题内容涉及经济、管理、环境、资源、生态、医学、安全、等众多领域。竞赛要求三人(本科生和研究生均可参加)为一组,在四天时间内,就指定的问题完成从建立模型、求解、验证到论文撰写的全部工作,体现了参赛选手研究问题、解决方案的能力及团队合作精神。 为现今各类数学建模竞赛之鼻祖。 MCM/ICM 是 Mathematical Contest In Modeling 和 Interdisciplinary Contest In Modeling 的缩写。MCM 始于 1985 年,ICM 始于 1999 年,由 COMAP(the Consortium for Mathematics and Its Applications,美国数学及其应用联合会)主办,得到了 SIAM,NSA,INFORMS 等多个组织的赞助。MCM/ICM 着重强调研究和解决方案的原创性、团队合作、交流及结果的合理性。

2024-01-26

遗传算法求解最优解最大值项目.zip

课程设计:遗传算法求解最大值 遗传算法(Genetic Algorithm,简称GA)是一种最基本的进化算法,它是模拟达尔文生物进化理论的一种优化模型,最早由J.Holland教授于1975年提出。遗传算法中种群每个个体都是解空间上的一个可行解,通过模拟生物的进化过程,从而在解空间内搜索最优解。 首先,让我们刷新自己的记忆,试着理解一下达尔文提出的自然选择。 这个理论很简单:物种想要生生不息,就得持续自我提升,适者才能生存。种群中最优秀的特质应该传递给后代,而其他个体也不能被遗忘,这样才能维持一定的多样性,自然环境发生变化时才更容易适应。这是遗传算法的理论基础。

2024-01-26

第16届智能车规则.pdf

全国大学生智能汽车竞赛是一项以“立足培养、重在参与、鼓励探索、追求卓越”为指导思想,面向全国大学生开展的具有探索性的工程实践活动。它以设计制作在特定赛道上能自主行驶且具有优越性能的智能模型汽车这类复杂工程问题为任务,鼓励大学生组成团队,综合运用多学科知识,提出、分析、设计、开发并研究智能汽车的机械结构、电子线路、运动控制和开发与调试工具等问题,激发大学生从事工程技术开发和科学研究探索的兴趣和潜能,倡导理论联系实际、求真务实的学风和团队协作的人文精神。

2024-01-22

蓝桥杯标准模板.zip

蓝桥杯单片机标准模板.。 蓝桥杯单片机组考察数模电和单片机的知识,c语言也涉及到一点,30分的客观70分的主观。客观题部分主要由数模电c语言单片机的基础知识为主,一共十道,数模电会有5-6道,单片机有3-4道,可能还会有一道c语言的语法题。数模电考察的很基础,基本是书本上的重点知识,而单片机的部分则可以通过查资源数据包中的芯片手册来解答,建议备赛时把芯片手册都过一遍。 比赛一共5小时,早9点到下午2点,时间分配基本上是30分钟的客观题,四个半小时的主观题。在省赛时,这个时间肯定是够的,但是国赛时就不太够了,平时练习时要注意速度。比赛固定赛点,如果自己学校没有申请成为赛点的话,那么就得去别的学校比赛,省赛会在省内比,而国赛原则上是要去北京比,但是这两年因为疫情原因,都改为了省内比赛。赛场是无网络环境,会发一个资源数据包,内含原理图,烧写软件,芯片手册等等,比赛时用官方发的单片机板子,提交答案时,需要将整个单片机工程文件压缩后上传。

2024-01-22

机器学习绘图模板ppt

本机器学习绘图模板 PPT 专为各类机器学习相关场景精心设计,无论是教学展示、学术汇报还是项目分享,都能助您一臂之力。其内容全面且逻辑清晰,涵盖机器学习基础概念、算法分类与原理、经典模型架构等重要章节,每个部分都配有且生动精美的图表,包括直观的算法流程图、模型结构示意图以及数据可视化图形等,能够帮助观众快速理解复杂的机器学习知识与概念。简洁大方的页面布局,搭配统一协调的色彩风格,既专业又富有吸引力,让您在讲解过程中更加得心应手,轻松呈现出机器学习的精髓,有效提升演示的效果与质量,是您在机器学习领域进行信息传递与交流的得力工具。

2025-05-26

SaTScan用户指南中文版

SaTScan是一款软件,专门用于分析空间、时间以及时空数据,通过空间、时间或时空扫描统计方法来实现多种功能。本资源为用户指南中文翻译版,是博主根据官方文档人工翻译的,方便大家学习参考。 1. 主要功能 地理疾病监测:检测地理区域内的疾病聚集情况,判断这些聚集是否具有统计学意义。 随机性检验:判断疾病在空间、时间或时空上是否随机分布。 疾病聚集警报的统计显著性评估:评估疾病聚集警报的统计显著性。 重复时间周期性疾病监测:用于早期检测疾病爆发。 此外,SaTScan还可应用于其他领域,如考古学、天文学、植物学、犯罪学、生态学、经济学、工程学、林业、遗传学、地理学、地质学、历史学、神经学和动物学等。

2025-02-20

GeoHD - 一种用于智慧城市热点探测的Python工具箱

GeoHD是一个用于地理空间热点探测、可视化与分析的Python工具包。其主要目标在于提供一个易于使用且适用于不同城市研究背景的热点探测与分析工具。GeoHD的工作原理如图1所示。首先,GeoHD对输入数据进行清晰可视化与统计分析,从而获得核密度估计(KDE)结果。接下来,采用窗口分析方法计算栅格数据的像元最大值表面,然后执行密度场表面与像元最大值表面的地图代数差运算,以得到相减结果,即非负值表面。在此阶段,相减结果中每个窗口中为零的位置即代表当前区域的局部热点位置。完成窗口分析后,采用重分类算法将极值区域与除极值以外的区域分为两类。最终,通过该过程获得的极值区域即为当前区域内事件发生的热点。 详情参考博客:https://blog.csdn.net/weixin_44026026/article/details/145760445?sharetype=blogdetail&sharerId=145760445&sharerefer=PC&sharesource=weixin_44026026&spm=1011.2480.3001.8118

2025-02-20

铁路轨道不平顺分析与预测(完整数据与代码)

包括全部完整代码与全部数据,可以直接运行。下载后存在任何问题可以与我联系,保证答疑。 铁路轨道作为铁行车的基础设施,是铁路线路的重要组成部分。随着经济和交通运输业的发展,我国的铁路运输正朝着高速和重载方向迅速发展,与此同时,轨道结构承受来自列车荷载、运行速度的冲击和列车的振动等各方面的作用力不断增大,不仅加速了铁路轨道设备的损坏,由此产生的轨道不平顺问题会严重影响车辆行,乘客的舒适度以及设备的使用寿命等,存在非常严重的安全隐患。 使用python分析所给轨道动检数据的滑动轨道质量指数,根据计算得到的高低不平顺标准差,构建时间序列预测分析模型,通过传统的机器学习与深度学习模型进行比较,预测未来一年的高低不平顺劣化趋势。 详细内容及如何使用请参考博客:https://blog.csdn.net/weixin_44026026/article/details/129980463?spm=1001.2014.3001.5501

2024-01-27

高等路基设计表.xlsx

该设计表是用于高等路基设计的计算工具,它包含了一系列的参数和数据,用于计算和规划路基的各个组成部分。以下是该设计表的功能和应用的详细描述: 1. **路基宽度和坡度计算**: - 设计表提供了土路肩宽度、土路肩坡度、硬路肩宽度等参数,这些参数对于确定路基的横向尺寸至关重要。 - 路拱横坡度(iG)和超高横坡度(iH)用于计算路基的纵向坡度,这对于排水和车辆稳定性有重要影响。 2. **行车道和路缘带设计**: - 行车道宽度是道路设计中的关键参数,它直接影响到交通流量和车辆行驶的安全性。 - 左侧路缘带宽度也是路基设计的一部分,它为行人和非机动车提供了安全的空间。 3. **路基过渡段设计**: - 超高过渡段长度(Lc)和超高过渡段起点/终点桩号用于设计道路在曲线部分的超高,以提供车辆在曲线行驶时的稳定性。 4. **桩号和高差计算**: - 桩号用于标记路基的具体位置,这对于施工和维护工作至关重要。 - 直线段高差计算用于确定路基在直线段的高程变化,这对于确保道路平整和排水有效非常重要。

2024-03-23

土方计算表-用于土木工程项目中的土地移动量计算.xlsx

该设计表是一个土方计算工具,主要用于土木工程项目中的土地移动量计算。它记录了在特定桩号(即位置标记)处的横断面面积、挖方量、填方量以及利用方数量和调配情况。以下是该设计表的功能和应用的详细描述: 1. **横断面面积计算**: - 表中列出了每个桩号处的横断面面积,这是通过测量或计算得出的道路横截面的面积。 2. **挖方和填方量统计**: - 挖方量指的是在施工过程中需要移除的土壤或岩石的体积。 - 填方量则是需要填充到路基或其他结构中的土壤或材料的体积。 - 表中详细记录了每个桩号处的挖方和填方量,包括土和石的分类及数量。 3. **利用方数量及调配**: - 利用方指的是在挖方过程中可以被直接用于填方的土壤或材料的体积。 - 调配是指在不同位置之间移动土壤或材料以平衡挖方和填方需求的过程。 - 表中提供了每个桩号处的利用方数量以及填缺和挖余的数据,这些数据对于确保土方工程的效率和成本控制至关重要。 4. **距离和桩号标记**: - 表中记录了每个桩号之间的距离,这有助于追踪土方移动的具体位置和范围。 等等功能

2024-03-23

土石方数量计算表.xlsx

该设计表是一个详细的土石方数量计算工具,主要用于土木工程项目中的土石方量计算和调配。它记录了各个桩号位置的横断面积、挖方量、填方量、本桩利用量、填缺量、挖余量等数据,并提供了距离信息和挖方总数量与填方总数量的累计值。以下是该设计表的功能和应用的详细描述: 1. **土石方量计算**: - 表中列出了每个桩号处的横断面积和相应的挖方与填方量,这些数据用于计算工程中需要移动的土石方总量。 2. **土石方调配**: - 设计表中的“本桩利用”、“填缺”和“挖余”列提供了每个桩号处土石方的利用情况,帮助工程师确定哪些位置的挖方可以用于填方,以及哪些位置需要额外的土石方填充。 3. **距离和桩号标记**: - 表中记录了每个桩号之间的距离,这有助于追踪土石方移动的具体位置和范围,以及确定土石方运输的成本和物流。 4. **挖方总数量与填方总数量累计**: - 表中提供了挖方和填方的累计总量,这对于项目管理和进度跟踪至关重要。 5. **土石方平衡分析**: - 通过分析表中的数据,可以进行土石方平衡分析,确保挖方与填方之间的平衡,减少废土外运和额外土石

2024-03-23

直线、曲线及转角表.xlsx

该设计表是一个用于记录和计算道路工程中直线、曲线及转角参数的工具。它包含了详细的交点坐标、交点桩号、转角值、曲线要素值等数据,以及直线长度和方向的计算。以下是该设计表的功能和应用的详细描述: 1. **曲线和直线参数计算**: - 表中记录了各个交点的坐标(X, Y),交点桩号,以及与这些交点相关的曲线参数,如转角值α(度)、半径R、缓和曲线长度Ls、切线长度T、曲线长度L、外距E和校正值J。 2. **曲线几何特性分析**: - 设计表提供了曲线的详细几何特性,包括第一缓和曲线起点、第一缓和曲线终点或圆曲线起点、曲线中点、圆曲线终点或第二缓和曲线起点、第二缓和曲线终点等,这些信息对于道路设计和施工至关重要。 3. **直线段长度和方向**: - 表中计算了直线段的长度和方向,包括交点间距、计算方位角(小于0的角度需要加上180度表示)、转角值α的弧度表示、切线增长值q、内移值p、缓和曲线角β0(角度和弧度表示)。 4. **道路设计和规划**: - 该设计表是道路设计和规划过程中的重要参考资料,它帮助工程师确定道路的几何形状,包括直线段、曲线段和转角,

2024-03-23

逐桩坐标表-用于记录和存档工程项目中的详细地理位置信息.xlsx

该设计表是一个逐桩坐标表,它主要用于记录和存档工程项目中的详细地理位置信息。每个桩号的位置都通过其高程、坐标(N (X) 和 E (Y))、方位角以及可能的备注信息来明确标识。以下是该设计表的功能和应用的详细描述: 1. **精确定位**: - 表中提供了每个桩号的精确高程和坐标,这对于确保工程项目的精确施工至关重要。 2. **施工放样**: - 施工团队可以使用这些坐标来放样,即在地面上标记出工程的具体位置,确保施工按照设计图纸进行。 3. **设计验证**: - 工程师可以使用这个表格来验证设计图纸上的桩号位置是否准确无误。 4. **数据记录**: - 逐桩坐标表作为项目文档的一部分,用于记录工程项目的详细地理位置信息,以备未来参考或审计。 5. **后期维护**: - 项目完成后,这个表格可以用于后期的维护和改造工作,因为它提供了每个重要位置的详细坐标。 6. **工程量计算**: - 坐标数据可以用于计算土方工程量、材料需求和其他相关的工程量。 7. **GIS集成**: - 这些坐标数据可以导入地理信息系统(GIS)

2024-03-23

逐桩坐标表曲线段 方位角.xlsx

该设计表是一个专门用于记录和计算曲线段逐桩坐标及方位角的工具。它详细列出了与曲线段相关的各种参数,包括缓和曲线的起点和终点桩号、切线横距、坐标元素、方位角、半径、长度等。以下是该设计表的功能描述: 1. **曲线段参数记录**: - 记录了曲线段的关键参数,如第一缓和曲线起点桩号、第一缓和曲线终点桩号、第二缓和曲线起点桩号等,以及与之相关的坐标和方位角信息。 2. **曲线设计和分析**: - 提供了曲线设计所需的详细几何参数,如圆曲线半径R、缓和曲线长度Ls、切线长度T等,这些参数对于设计和分析道路曲线至关重要。 3. **方位角计算**: - 包含了交点前后直线方位角、圆曲线方位角以及缓和曲线方位角的计算,这些数据对于确保道路曲线的正确铺设和转向至关重要。 4. **坐标计算**: - 表中提供了任意点到曲线关键点(如ZH、HY、QZ)的曲线长l,以及坐标元素,这些数据用于计算曲线上任意点的具体位置。 5. **施工放样**: - 施工团队可以利用这些数据进行放样,确保曲线段按照设计图纸准确施工。 6. **数据存档**: - 作为项

2024-03-23

逐桩坐标表直线段.xlsx

该设计表是一个逐桩坐标表,专门用于记录和计算直线段的坐标和方位角。它提供了直线段上各个桩号的详细位置信息,包括坐标(N (X) 和 E (Y))、方位角以及桩号差。以下是该设计表的功能描述: 1. **精确位置记录**: - 表中记录了直线段上每个桩号的精确坐标,这对于确保工程项目的精确施工至关重要。 2. **方位角计算**: - 提供了每个桩号的方位角,这对于确定直线段的方向和施工放样非常重要。 3. **桩号差计算**: - 表中计算了相邻桩号之间的差值,这有助于了解直线段的长度和施工进度。 4. **施工放样**: - 施工团队可以使用这些坐标和方位角来放样,即在地面上标记出工程的具体位置,确保施工按照设计图纸进行。 5. **数据存档**: - 作为项目文档的一部分,该表用于记录和存档直线段的详细设计信息,以备未来参考或审计。 6. **后期维护**: - 项目完成后,这个表格可以用于后期的维护和改造工作,因为它提供了每个重要位置的详细坐标。 7. **工程量计算**: - 坐标数据可以用于计算土方工程量、材料需求和其他

2024-03-23

纵断面-记录和计算工程项目中特定区域的纵断面特性.xlsx

该设计表是一个纵断面表,用于详细记录和计算工程项目中特定区域的纵断面特性。它包括了地面高程、设计高程、填挖高程、坡口和坡脚信息,以及左右两侧的平曲线数据。以下是该设计表的功能描述: 1. **纵断面特性记录**: - 表中记录了每个桩号的地面高程和设计高程,这些数据用于描述地形的变化和工程设计的高程要求。 2. **填挖高程计算**: - 提供了每个桩号的填挖高程信息,即需要填充或挖掘的土方量,这对于土方工程的规划和执行至关重要。 3. **坡度设计**: - 包含了坡口和坡脚的高程差和水平距离,这些信息用于确定道路或工程结构的坡度,确保排水和结构稳定性。 4. **平曲线参数**: - 记录了左右两侧的平曲线参数,如A1、A2、A3等,这些参数对于设计和施工过程中的曲线放样和验证非常重要。 5. **施工放样**: - 施工团队可以使用这些数据进行放样,确保施工按照设计图纸进行,特别是在处理道路弯道或其他曲线结构时。 6. **数据存档与分析**: - 作为项目文档的一部分,该表用于记录和存档纵断面的详细设计信息,以备未来参考或审计。

2024-03-23

大创经验分享&项目资源&代码程序资源

换了数据库mysql,以前用的是mongodb,简单,但是后面发现跨表查询确实是个问题,而且motor不支持ORM 去掉了celery,因为感觉就两个定时任务,完全没必要用celery,schedule守护线程可能是个更好更轻量的选择 对项目目录做了重大调整,增加了handlers和common,api目录,对程序的职责做了更明确的划分 网络或磁盘IO全部异步化,以前都是只有mongodb是异步客户端,而redis和oss都是同步请求 对url.py做了重大改变,以前是只有多了一个api,就往url.py里写,弄得后面上百个api很难找到某个 功能高度封装,降低代码耦合度,尤其是对异步任务的封装,见xiaodi/common/tasks.py 充分利用了python的特性,如对象协议、元类、混入类mixin、列表推导式、生成器 对参数的接收采用了flask_restful的reqparse思想,使得代码精简了很多 考虑了设计模式,如工厂方法 增加了oss连接超时处理 引入了请求时cache,确保同一次http请求不会对某个对象请求多次 引入了日志 引入了sse

2024-01-27

ACM/NOI/CSP比赛经验分享&代码程序资源:深度优先搜索

ACM/NOI/CSP比赛经验分享&代码程序资源:深度优先搜索 全国青少年信息学奥林匹克联赛(National Olympiad in Informatics in Provinces,简称NOIP)自1995年至2020年已举办25次。每年由中国计算机学会统一组织。 NOIP在同一时间、不同地点以各省市为单位由特派员组织。全国统一大纲、统一试卷。初、高中或其他中等专业学校的学生可报名参加联赛。联赛分初赛和复赛两个阶段。初赛考察通用和实用的计算机科学知识,以笔试形式进行。复赛为程序设计,须在计算机上调试完成。参加初赛者须达到一定分数线后才有资格参加复赛。联赛分普及组和提高组两个组别,难度不同,分别面向初中和高中阶段的学生。

2024-01-27

大创经验分享&项目资源&代码程序资源:模型车牌生成器

利用Arm Cortex-M3 DesignStart处理器在可编程逻辑平台上构建片上系统,实现图像采集,图像处理和人机交互功能,观察并优化系统的性能。 使用ArmCortex-M3 DesignStart Eval提供的处理器IP,在你的可编程逻辑平台上构建简单的Cortex-M3片上系统。 系统应至少包含: ArmCortex-M3 DesignStart处理器; 利用片上或板上资源实现的ROM与RAM; 与芯片外部引脚连接的GPIO外设。 使用KeilμVision工具编写并生成软件程序,实现GPIO输出引脚跟随GPIO输入引脚变化。将对应的输入、输出引脚连接至板上开关与LED,确认程序正确运行。 如上图,在FPGA中编写图像传感器的接口和数据缓存,作为Cortex-M3片上系统的一个外设,并编写软件程序,将图像传感器的采集结果显示在开发平台自带的液晶屏上。 在Cortex-M3上编写软件程序,识别摄像头拍摄到的车牌中的5位数字并显示在LCD屏上。可以在FPGA中设计硬件加速器,帮助Cortex-M3加快图像识别的速度。 利用以上实现的系统,进行20张

2024-01-27

ACM/NOI/CSP比赛经验分享&代码程序资源:基本算法贪心

ACM/NOI/CSP比赛经验分享&代码程序资源:基本算法贪心

2024-01-27

图像风格迁移研究数据集,提供一幅画将任意一张照片转化成这个风格

图像风格迁移研究可以使用的数据集 所谓风格迁移,其实就是提供一幅画(Reference style image),将任意一张照片转化成这个风格,并尽量保留原照的内容(Content)。深度学习的图像风格迁移方法主要包括: (1)基于图像迭代。该方法合成图像的质量高、可控性好,易于调参,无需训练数据,也无生成模型。但每次生成图片都需重新训练,十分耗时。 (2)基于模型迭代。计算速度快,可用于视频快速风格化,目前工业应用软件的主流技术。图像生成质量有待进一步提高,需要大量的训练数据。

2024-01-27

电赛历年试题&经验分享&代码程序资源:2020年电赛A题代码

电赛历年试题&经验分享&代码程序资源:2020年电赛A题代码 分为 手机端(android),主显示端,姿态检测手环端,心率滤波读取端 mcu 采用的是esp32.结合了适配esp32的arduino以及rtos框架进行开发。 开发环境 及 语言 安卓为android studio java开发 esp32为platform io c/c++ 节点间通信方式 tcp直连,手机端为总服务端

2024-01-27

MySQL-Notes学习笔记

MySQL 是一个关系型数据库管理系统,由瑞典 MySQL AB 公司开发,目前属于 Oracle 公司。MySQL 是一种关联数据库管理系统,关联数据库将数据保存在不同的表中,而不是将所有数据放在一个大仓库内,这样就增加了速度并提高了灵活性。 MySQL 是开源的,目前隶属于 Oracle 旗下产品。 MySQL 支持大型的数据库。可以处理拥有上千万条记录的大型数据库。 MySQL 使用标准的 SQL 数据语言形式。 MySQL 可以运行于多个系统上,并且支持多种语言。这些编程语言包括 C、C++、Python、Java、Perl、PHP、Eiffel、Ruby 和 Tcl 等。 MySQL 对 PHP 有很好的支持,PHP 是很适合用于 Web 程序开发。 MySQL 支持大型数据库,支持 5000 万条记录的数据仓库,32 位系统表文件最大可支持 4GB,64 位系统支持最大的表文件为8TB。 MySQL 是可以定制的,采用了 GPL 协议,你可以修改源码来开发自己的 MySQL 系统。

2024-01-27

该方案作为一套多功能的后台框架模板,适用于绝大部分的后台管理系统开发 基于 Vue3 + pinia + typescript

该方案作为一套多功能的后台框架模板,适用于绝大部分的后台管理系统开发。基于 Vue3 + pinia + typescript,引用 Element Plus 组件库,方便开发。实现逻辑简单,适合外包项目,快速交付。 功能 Element Plus vite 3 pinia typescript 登录/注销 Dashboard 表格 Tab 选项卡 表单 图表 富文本/markdown编辑器 图片拖拽/裁剪上传 权限管理 三级菜单 自定义图标

2024-01-27

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除