LeetCode 208. Implement Trie (Prefix Tree) - 前缀树(Trie Tree or Prefix Tree)系列题1

本文介绍了前缀树(Trie树)的基本概念和性质,它是一种用于高效存储和检索字符串的数据结构,常用于搜索引擎的文本词频统计。前缀树的主要优点是减少查询时间并避免不必要的字符串比较。在LeetCode中,前缀树的应用题目以208题Implement Trie (Prefix Tree)为起点。文章通过示例展示了如何插入和搜索字符串,并提供了startsWith方法来检查字符串是否以特定前缀开始。
摘要由CSDN通过智能技术生成

前缀树又称单词查找树,Trie树,是一种树形结构,是一种哈希树的变种。典型应用是用于统计,排序和保存大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计。它的优点是:利用字符串的公共前缀来减少查询时间,最大限度地减少无谓的字符串比较,查询效率比哈希树高。[百度百科]

前缀树有3个基本性质:

根节点不包含字符,除根节点外每一个节点都只包含一个字符; 从根节点到某一节点,路径上经过的字符连接起来,为该节点对应的字符串; 每个节点的所有子节点包含的字符都不相同。

LeetCode中出现前缀树相关题的频率也比较高,其中208. Implement Trie (Prefix Tree)是前缀树的入门题,也是其他所有可以用前缀树解答的题的基础。

class TrieNode:
    def __init__(self) :
        self.end = False
        self.children = [None] * 26
        
class Trie:
    
    def __init__(self):
        self.root = TrieNode()

    def insert(self, word: str) -> None:
        node = self.root
        for c in word:
            i = ord(c) - ord('a')
            if not node.children[i]:
                node.children[i] = TrieNode()
            node = node.children[i]
        node.end = True

    def search(self, word: str) -> bool:
        node = self.root
        for c in word:
            i = ord(c) - ord('a')
            if not node.children[i]:
                return False
            node = node.children[i]
            
        return node.end == True
        

    def startsWith(self, prefix: str) -> bool:
        node = self.root
        for c in prefix:
            i = ord(c) - ord('a')
            if not node.children[i]:
                return False
            node = node.children[i]
               
        return True

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值