LeetCode 74. Search a 2D Matrix - 二分查找(Binary Search)系列题6

本文介绍了如何使用二分查找算法解决LeetCode 74题,该题要求在一个特定性质的二维矩阵中寻找目标值。矩阵特性为每行元素从左到右递增,且每一行的第一个元素大于前一行的最后一个元素。通过将矩阵转化为一维有序数组,可以将问题简化为基本的二分查找问题。
摘要由CSDN通过智能技术生成

Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:

  • Integers in each row are sorted from left to right.
  • The first integer of each row is greater than the last integer of the previous row.

Example 1:

Input: matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3
Output: true

Example 2:

Input: matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13
Output: false

Constraints:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 100
  • -104 <= matrix[i][j], target <= 104

看完题目大概猜到要用到二分查找法,但是题目要求从一个矩阵查找目标数,那关键点就变成如何查找中间点来把矩阵分成两区间。仔细分析题目就会发现这题跟LeetCode 704. Binary Search一样就是一道最基础的二分查找法的题。

题目说到矩阵里的数是有序的,每一行的数都是排好序的从左到右递增,后一行的第一个数比前一行的最后一个数大。我们会发现这个顺序跟我们平常遍历矩阵的顺序是一样的,即从左到右从上到下遍历。因此如果我们按从左到右从上到下遍历矩阵把矩阵转换成一个一维数组,那这个数组就是一个排好序的递增数组,并且数组的下标又跟矩阵的行列下标有一一对应的关系。

本题就变成了从一个排好序的一维数组里查找一个目标数, 跟LeetCode 704. Binary Search一模一样。

class Solution:
    def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:
        m, n = len(matrix), len(matrix[0])
        
        l, r = 0, m * n - 1
        
        while l <= r :
            mid = l + (r - l) // 2
            i, j = mid // n, mid % n
            if matrix[i][j] == target:
                return True
            
            if matrix[i][j] < target:
                l = mid + 1
            else:
                r = mid - 1
        
        return False

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值