我记得知道这个逗比方法是好像是在初一,但是怎么知道的已经忘了。。。。。。o(╯□╰)o
那就开始了
问题描述:
试证明 0.999999...(无限循环)=1
证明:
令a=0.99999...(无限循环)
则10a=9.99999...(无限循环)
10a-a=9.99999...(无限循环)-0.99999...(无限循环)=9=9a
所以a=1
结论得证
。。。。
还有一种思辨方法:
两个数a和b
若a<b
则必定存在一个数c满足 a<c<b ( 直观的可令c=(a+b)/2 )
但是显然在0.99999...(无限循环)和1之间,并不存在这样一个c。。。。。。。。
结论又得证了。。。
以上过程并不严谨,仅供娱乐。。。。