892. 三维形体的表面积

该博客讨论了LeetCode第892题——三维形体的表面积问题。通过减法和加法两种思路详细解释了解题过程,其中减法思路更为直观,而加法思路需要考虑更多边界情况。文章使用柱子模型来简化问题,并提供了相应的判断条件和代码实现。
摘要由CSDN通过智能技术生成

#892. 三维形体的表面积

题目描述
在这里插入图片描述
解题思路
1、减法思路
这个题看了好久才看明白题目意思,比如[[2]]意思是在11的网格内放了一个小正方体,[[1,2][3,4]]意思是在22的网格里面,(0,0)位置放了1个正方体,(0,1)位置放了两个,(1,1)位置放了4个。有加法思路和减法思路,我一开始想到的就是减法思路,感觉减法比较直观好理解。每个相邻小方块消耗掉了两个单位的面积,相邻面数就是小方块个数里面较小的那个,引用评论里面一个图。
在这里插入图片描述

public int surfaceArea(int[][] grid) {
           
	int num = 0,near = 0,n = grid.length;         
	for (int i = 0; i < n ; i++) {
               
		for (int j = 0; j < n; j++) {
                   
			num += grid[i][j];               //num记录总方块数     
		if (j < n-1) near += Math
			near = Math.min(grid[i][j],grid[i][j+1]); //near得到相邻的面数   
		if 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值