剑指 Offer 14- I. 剪绳子
难度:中等
题目描述
解题思路
1、数学方法
记不清在哪里好像做过这道题,在所有的分法里,每次以3为一段能得到最大的结果。
比如9,分成33的时候是最大的
计算数字除以3的余数,如果余1,就和其中一个三组合成4
比如10,分成34,而不是331
如果余2的话,就直接乘上去,比如11 -> 333*2
如果余0的话,就直接等于3的平方
但是要注意这些只对n > 3的时候有用,如果小于3,有特殊答案
/*
* 剑指 Offer 14- I. 剪绳子
* 2020/7/20
*/
public int cuttingRope(int n) {
if(n <= 3) {
return n-1;
}
int count = n/3;
int dev = n%3;
int re = 0;
if(dev == 1) {
re = (int) (Math.pow(3, count-1)*4);
}else if(dev == 2){
re = (int) (Math.pow(3, count)*2);
}else if(dev == 0) {
re = (int) (Math.pow(3, count));
}
return re;
}
2、动态规划
题目的标签是动态规划,反而觉得动态规划有点不好理解了
先初始化几个值,然后对于后面的每个值,比如6,从可能的乘法组合里找到最大的那个组合
dp[2]*dp[4] dp[3]*dp[3]
public int cuttingRope1(int n) {
if(n <= 3) {
return n-1;
}
int[] dp = new int[n+1];
dp[0] = 1;
dp[1] = 1;
dp[2] = 2;
dp[3] = 3;
for (int i = 4; i <= n; i++) {
for(int j=2;j<=i/2;j++)
dp[i] = Math.max(dp[i],dp[j]*dp[i-j]);
}
return dp[n];
}