机器学习基础与应用问答全解析

1、你能想出用于预测信用风险的经验方法吗?

可以将先前客户的资料以及表明贷款是否偿还的标签作为经验数据。模型通过学习这些数据,当面对新客户时,就能预测其是否具备信用价值。

2、你能列举一些机器学习常用的术语吗?

  • 示例/样本
  • 数据集
  • 特征/属性/自变量
  • 分类数据
  • 标签
  • 数值数据
  • 目标/因变量
  • 特征向量
  • 类别
  • 模型
  • 经典机器学习
  • 强化学习
  • 基于神经网络和深度学习的算法
  • 监督学习
  • 无监督学习
  • 半监督学习
  • 分类
  • 回归
  • 聚类
  • 关联规则挖掘
  • 降维

3、用一到两句话描述一个示例,以匹配以下特定的机器学习任务:1. 分类;2. 聚类;3. 回归;4. 排序;5. 预测;6. 预报;7. 异常值检测;8. 标注;9. 序列分析;10. 关联规则。

  1. 分类 :根据花朵的花瓣长度、宽度、颜色等特征,将其分为玫瑰、百合、郁金香等不同类别。
  2. 聚类 :将不同客户按照消费习惯、购买频率等特征进行聚类,以便为不同群体制定营销策略。
  3. 回归 :根据房屋的面积、房间数量、地理位置等因素,预测房屋的价格。
  4. 排序 :在搜索结果中,根据网页的相关性、质量等对搜索结果进行排序。
  5. 预测 :根据历史销售数据,预测下一个季度某产品的销量。
  6. 预报 :根据气象数据,预报未来一周的天气情况。
  7. 异常值检测 :在一批产品的质量检测数据中,找出与正常数据差异较大的异常产品。
  8. 标注 :为新闻文章标注主题标签,如政治、经济、体育等。
  9. 序列分析 :分析股票价格的时间序列数据,预测未来价格走势。
  10. 关联规则 :发现超市中顾客购买面包时,常常会同时购买牛奶的关联规则。

4、什么是表示?i 表示正在学习的内容的特征化方式。ii 表示输入的表示方式。iii 表示算法的表示方式。

i、ii

5、有标签样本由以下哪些组成:i 仅特征 ii 特征和标签 iii 仅标签

ii

6、模型选择涉及:i 选择模型;ii 选择学习算法;iii 选择算法的自由参数

i、ii、iii。模型选择通常需要选择合适的模型,不同的模型适用于不同的场景;要选择合适的学习算法来训练模型;同时还需要为算法选择合适的自由参数,这些参数会影响模型的性能和训练效果。

7、验证样本的作用是:i. 用于调整模型的参数;ii. 用于测试模型;iii. 用于训练模型

i

8、奥卡姆剃刀原则是:i 倾向于选择能精确拟合数据的复杂假设;ii 倾向于选择能最佳拟合数据的简单假设;iii 倾向于选择不能拟合数据的简单假设

ii

9、机器学习最常见的数据组织形式是 i 图表 ii 数组 iii 字符串

ii

10、对于矩阵A,矩阵的逆存在当且仅当:i 矩阵是奇异且方阵;ii 矩阵是非奇异且方阵;iii 矩阵是奇异且矩形。

ii

11、矩阵的秩是以下哪一项:i 线性无关行的数量;ii 行数;iii 行数和列数的乘积

i

12、两个变量相互独立,是因为:i. 它们的秩为零;ii. 它们的协方差等于1;iii. 它们的协方差等于零。

iii

13、你能想到教育和行业中泛化的例子吗?

在教育领域,机器学习可通过自适应学习分析学生表现,修正教学方法和课程,这体现了从已有学生表现数据中泛化出适用于不同学生的教学策略。

例如,根据大部分学生在某类知识上的学习情况,调整教学内容和方式,使其能对更多学生适用。

在行业中,如在商业场景的分类、聚类等问题解决中,机器学习模型基于训练数据学习模式,对新的、未见过的数据进行预测和分析,这也是泛化的体现。

如电商平台根据已有用户的消费数据,预测新用户的消费行为和偏好,为他们推荐合适的商品。

14、何时会观察到过拟合现象?i. 当模型过于复杂时,通常会观察到过拟合现象。ii. 当模型拟合大量数据时,通常会观察到过拟合现象。

i

15、在机器学习中,什么是模型选择?i 选择用于描述数据集的任何模型的过程。ii 选择用于描述不同数据集的二元模型的过程。iii 在不同的数学模型中选择模型,并为模型选择合适参数的过程。

iii

16、给出一个回归的例子。i. 根据用户行为找出用户类别;ii. 根据学生档案找出学生群体;iii. 根据土壤条件找出植物的高度。

iii

17、什么是独立同分布依赖?i. 序列中的一个元素与它之前的随机变量相互独立;ii. 序列中一个元素的识别依赖于它之前的变量;iii. 序列中一个元素的识别依赖于它之后的变量。

i

18、什么是监督学习?i 系统记住训练样本以预测新样本。ii 通过使用无标签示例的训练过程训练模型来预测新数据。iii 通过使用有标签示例的训练过程训练模型来预测新数据。

iii

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值