36、固体废弃物检测中的机器视觉技术

固体废弃物检测中的机器视觉技术

1 图像融合模型

1.1 HSI - BERT模型

HSI - BERT模型利用MHSA方法学习全局依赖关系,能够捕获全局上下文并聚焦于重要位置,减少冗余。通过关注依赖较少的位置,可降低模型复杂度,实现更快、更准确的收敛。实验对比表明,HSI - BERT在计算时间和分类精度方面超越了当前的CNN方法。

1.2 早期融合模型

1.2.1 红外与可见光图像融合(IVIF)

红外图像可绕过光照变化和伪影带来的视觉认知障碍,但空间分辨率不足,纹理细节过小。可见光图像则具有更高的细节水平,能有效描绘外观和梯度信息,但易受遮挡和光反射的干扰。

IVIF算法通常分为传统方法和深度学习(DL)方法两类:
- 传统方法 :在变换或空间域进行图像处理,代表性方法包括稀疏表示、多尺度变换、显著性和子空间方法等。
- 深度学习方法 :根据采用的网络架构,主要分为生成对抗网络(GANs)、基于卷积神经网络(CNN)的框架和基于自动编码器(AE)的方法。深度学习方法通常先使用深度神经网络(DNNs)从输入图像中提取特征,再用特定的融合方法整合这些特征。

以下是几种基于不同架构的深度学习图像融合方法:
| 架构类型 | 代表模型 | 特点 | 存在问题 |
| ---- | ---- | ---- | ---- |
| CNN | DeepFuse、IFCNN、U2Fusion、PMGI、SDNet、MGFCTFuse | 优化设计的损失函数贯穿特征提取、融合和

源码来自:https://pan.quark.cn/s/fdd21a41d74f 正方教务管理系统成绩推送 简介 使用本项目前: 早晨睡醒看一遍教务系统、上厕所看一遍教务系统、刷牙看一遍教务系统、洗脸看一遍教务系统、吃早餐看一遍教务系统、吃午饭看一遍教务系统、睡午觉前看一遍教务系统、午觉醒来看一遍教务系统、出门前看一遍教务系统、吃晚饭看一遍教务系统、洗澡看一遍教务系统、睡觉之前看一遍教务系统 使用本项目后: 成绩更新后自动发通知到微信 以节省您宝贵的时间 测试环境 正方教务管理系统 版本 V8.0、V9.0 如果你的教务系统页面与下图所示的页面完全一致或几乎一致,则代表你可以使用本项目。 目前支持的功能 主要功能 每隔 30 分钟自动检测一次成绩是否有更新,若有更新,将通过微信推送及时通知用户。 相较于教务系统增加了哪些功能? 显示成绩提交时间,即成绩何时被录入教务系统。 显示成绩提交人姓名,即成绩由谁录入进教务系统。 成绩信息按时间降序排序,确保最新的成绩始终在最上方,提升用户查阅效率。 计算 计算百分制 对于没有分数仅有级别的成绩,例如”及格、良好、优秀“,可以强制显示数字分数。 显示未公布成绩的课程,即已选课但尚未出成绩的课程。 使用方法 Fork 本仓库 → 开启 工作流读写权限 → → → → → 添加 Secrets → → → → → → Name = Name,Secret = 例子 程序会自动填充 尾部的 ,因此你无需重复添加 对于部分教务系统,可能需要在 中添加 路径,如: 开启 Actions → → → 运行 程序 → → 若你的程序正常运行且未报错,那么在此之后,程序将会每隔 30 分钟自动检测一次成绩是否有更新 若你看不懂上述使用...
综合能源系统零碳优化调度研究(Matlab代码实现)内容概要:本文围绕“综合能源系统零碳优化调度研究”,提供了基于Matlab代码实现的完整解决方案,重点探讨了在高比例可再生能源接入背景下,如何通过优化调度实现零碳排放目标。文中涉及多种先进优化算法(如改进遗传算法、粒子群优化、ADMM等)在综合能源系统中的应用,涵盖风光场景生成、储能配置、需求响应、微电网协同调度等多个关键技术环节,并结合具体案例(如压缩空气储能、光热电站、P2G技术等)进行建模与仿真分析,展示了从问题建模、算法设计到结果验证的全流程实现过程。; 适合人群:具备一定电力系统、能源系统或优化理论基础,熟悉Matlab/Simulink编程,从事新能源、智能电网、综合能源系统等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①开展综合能源系统低碳/零碳调度的科研建模与算法开发;②复现高水平期刊(如SCI/EI)论文中的优化模型与仿真结果;③学习如何将智能优化算法(如遗传算法、灰狼优化、ADMM等)应用于实际能源系统调度问题;④掌握Matlab在能源系统仿真与优化中的典型应用方法。; 阅读建议:建议结合文中提供的Matlab代码与网盘资源,边学习理论模型边动手调试程序,重点关注不同优化算法在调度模型中的实现细节与参数设置,同时可扩展应用于自身研究课题中,提升科研效率与模型精度。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值