固体废弃物检测中的机器视觉技术
1 图像融合模型
1.1 HSI - BERT模型
HSI - BERT模型利用MHSA方法学习全局依赖关系,能够捕获全局上下文并聚焦于重要位置,减少冗余。通过关注依赖较少的位置,可降低模型复杂度,实现更快、更准确的收敛。实验对比表明,HSI - BERT在计算时间和分类精度方面超越了当前的CNN方法。
1.2 早期融合模型
1.2.1 红外与可见光图像融合(IVIF)
红外图像可绕过光照变化和伪影带来的视觉认知障碍,但空间分辨率不足,纹理细节过小。可见光图像则具有更高的细节水平,能有效描绘外观和梯度信息,但易受遮挡和光反射的干扰。
IVIF算法通常分为传统方法和深度学习(DL)方法两类:
- 传统方法 :在变换或空间域进行图像处理,代表性方法包括稀疏表示、多尺度变换、显著性和子空间方法等。
- 深度学习方法 :根据采用的网络架构,主要分为生成对抗网络(GANs)、基于卷积神经网络(CNN)的框架和基于自动编码器(AE)的方法。深度学习方法通常先使用深度神经网络(DNNs)从输入图像中提取特征,再用特定的融合方法整合这些特征。
以下是几种基于不同架构的深度学习图像融合方法:
| 架构类型 | 代表模型 | 特点 | 存在问题 |
| ---- | ---- | ---- | ---- |
| CNN | DeepFuse、IFCNN、U2Fusion、PMGI、SDNet、MGFCTFuse | 优化设计的损失函数贯穿特征提取、融合和
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



