Description
一棵树有n个节点,编号为0到n − 1。你可以从一个顶点走到它的任何一个相邻顶点。 每个顶点有个可正可负的快乐度,你也有一个快乐度,这个值最开始是0。在他到达一个顶点的时候,他的快乐度将会加上该顶点的快乐度。 当然有时候你的快乐度会是负数, 这个时候他会很难受于是会宣泄情绪让快乐度重新变成 0。 如果经过了任何一个曾经经过的节点,快乐度不会变化,哪怕这个节点的快乐度为负数。 也就是说一个点只有在第一次经过时会对这条狗的快乐度有影响。第一个访问的点永远是0号节点(这个点的快乐度也要算),可以在任何时候离开。你希望离开时的快乐度尽量高。计算这个快乐度。
Solution
发现最终的答案中有一条“分界线”使得其上方的权值的和是负的且不算入最终答案,下方的权值和即答案。
自下而上树形dp,
gu
表示以
u
为根节点的子树能得到的最大权值,
代码极短,反正感觉很玄学,感性理解一下好啦。
Code
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int> PII;
typedef vector<int> VI;
#define For(i , j , k) for (register int i = (j) , i##_end_ = (k) ; i <= i##_end_ ; ++ i)
#define Fordown(i , j , k) for (register int i = (j) , i##_end_ = (k) ; i >= i##_end_ ; -- i)
#define Set(a , b) memset(a , b , sizeof(a))
#define pb(a) push_back(a)
#define mp(a, b) make_pair(a, b)
#define ALL(a) (a).begin(), (a).end()
#define SZ(a) ((int)(a).size())
#define fir first
#define sec second
#define INF (0x3f3f3f3f)
#define INF1 (2139062143)
#define Mod (1000000007)
#ifdef hany01
#define debug(...) fprintf(stderr , __VA_ARGS__)
#else
#define debug(...)
#endif
template <typename T> inline bool chkmax(T &a , T b) { return a < b ? (a = b , 1) : 0; }
template <typename T> inline bool chkmin(T &a , T b) { return b < a ? (a = b , 1) : 0; }
int _ , __;
char c_;
inline int read()
{
for (_ = 0 , __ = 1 , c_ = getchar() ; !isdigit(c_) ; c_ = getchar()) if (c_ == '-') __ = -1;
for ( ; isdigit(c_) ; c_ = getchar()) _ = (_ << 1) + (_ << 3) + (c_ ^ 48);
return _ * __;
}
inline void File()
{
freopen("b.in" , "r" , stdin);
freopen("b.out" , "w" , stdout);
}
const int maxn = 1003;
int n, fa[maxn], val[maxn], g[maxn], f[maxn];
int main()
{
File();
n = read();
For(i, 2, n) fa[i] = read() + 1;
For(i, 1, n) val[i] = read();
Fordown(i, n, 1)
{
chkmax(g[i] += val[i], 0); chkmax(f[i], g[i]);
if (i == 1) break;
g[fa[i]] += g[i]; f[fa[i]] += f[i];
}
printf("%d\n", f[1]);
return 0;
}
//竹边台榭水边亭,不要人随只独行。
//乍暖柳条无气力,淡晴花影不分明。
//一番过雨来幽径,无数新禽有喜声。
//只欠翠纱红映肉,两年寒食负先生。
//--杨万里《春晴怀故园海棠》