【UVa 10294】Arif in Dhaka(First Love Part 2) (群论、Polya定理)

4 篇文章 0 订阅
1 篇文章 0 订阅

Description

click me
默默复制了vjudge的链接(逃

Solution

可以XJB乱模拟算的题目为什么要用群论
题中有两种置换:
1. 旋转
对于跨度为 i i 的旋转,则有(i,n)个循环、每个循环有 n(i,n) n ( i , n ) 个元素(对称性)。
则旋转的不动点总数为:

A=i=0n1t(i,n) A = ∑ i = 0 n − 1 t ( i , n )

2. 翻转
对于翻转,有两种情况
- 偶数
有两种对称轴:
穿过珠子的形成 n21 n 2 − 1 个长度为 2 2 的循环和2个长度为 1 1 的循环。
不穿过珠子的形成n2个长度为 2 2 的循环。
两种对称轴各为n2条。
不动点总数为
B=n2(tn2+1+tn2) B = n 2 ( t n 2 + 1 + t n 2 )

- 奇数
n n 条对称轴,都形成了n12个长度为 2 2 的循环和1个长度为 1 1 的循环。
不动点总数为
B=ntn+12

根据 Polya P o l y a 定理,项链总数为 An A n ,手镯总数为 A+B2n A + B 2 n
应该抄得跟LRJ一字不漏吧。。

但是这样为什么不会漏算呢?
因为旋转加翻转不就是换个方向翻转么。。。

Source Code

/****************************
 * Au: Hany01
 * Prob: UVa 10294 Arif in Dhaka (First Love Part 2)
 * Date: Feb 1st, 2018
 * Email: hany01@foxmail.com
****************************/

#include<bits/stdc++.h>

using namespace std;

typedef long long LL;
typedef pair<int, int> PII;
typedef vector<int> VI;
#define rep(i , j) for (int i = 0 , i##_end_ = j; i < i##_end_ ; ++ i)
#define For(i , j , k) for (int i = (j) , i##_end_ = (k) ; i <= i##_end_ ; ++ i)
#define Fordown(i , j , k) for (int i = (j) , i##_end_ = (k) ; i >= i##_end_ ; -- i)
#define Set(a , b) memset(a , b , sizeof(a))
#define SZ(a) ((int)(a.size()))
#define ALL(a) a.begin(), a.end()
#define pb(a) push_back(a)
#define mp(a, b) make_pair(a, b)
#define INF (0x3f3f3f3f)
#define INF1 (2139062143)
#define Mod (1000000007)
#define y1 wozenmezhemecaia 
#ifdef hany01
#define debug(...) fprintf(stderr , __VA_ARGS__)
#else
#define debug(...)
#endif

inline void File() {
#ifdef hany01 
    freopen("uva10294.in" , "r" , stdin);
    freopen("uva10294.out" , "w" , stdout);
#endif
}

template<typename T> inline bool chkmax(T &a, T b) { return a < b ? a = b, 1 : 0; }
template<typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; }

inline int gcd(int x, int y) { return x ? gcd(y % x, x) : y; }

const int maxn = 53;

LL Pow[maxn], Ans1, Ans2;
int n, t;

int main()
{
    File();
    Pow[0] = 1;
    while (scanf("%d%d", &n, &t) != EOF) {
        For(i, 1, n) Pow[i] = Pow[i - 1] * t;
        Ans1 = 0;
        For(i, 1, n) Ans1 += Pow[gcd(i, n)];
        Ans2 = (n & 1) ? Pow[(n >> 1) + 1] * n : (Pow[n >> 1] + Pow[(n >> 1) + 1]) * (n >> 1);
        cout << Ans1 / n << ' ' << (Ans1 + Ans2) / (n << 1) << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值