【BZOJ3295】【CQOI2011】动态逆序对(CDQ分治)

90 篇文章 0 订阅
7 篇文章 0 订阅

Description

对于序列A,它的逆序对数定义为满足 i<j i < j ,且 Ai>Aj A i > A j 的数对 (i,j) ( i , j ) 的个数。给 1 1 n的一个排列,按照某种顺序依次删除 m m <script type="math/tex" id="MathJax-Element-28">m</script>个元素,你的任务是在每次删除一个元素之前统计整个序列的逆序对数。

Solution

非主席树做法。

考虑在原本的位置、大小的基础上,将时间看做另一维,便是一个三维偏序的问题了。

直接CDQ两次即可。

Source

/************************************************
 * Au: Hany01
 * Date: Mar 13th, 2018
 * Prob: [BZOJ3295][CQOI2011] 动态逆序对
 * Email: hany01@foxmail.com
************************************************/

#include<bits/stdc++.h>

using namespace std;

typedef long long LL;
typedef pair<int, int> PII;
#define rep(i, j) for (register int i = 0, i##_end_ = (j); i < i##_end_; ++ i)
#define For(i, j, k) for (register int i = (j), i##_end_ = (k); i <= i##_end_; ++ i)
#define Fordown(i, j, k) for (register int i = (j), i##_end_ = (k); i >= i##_end_; -- i)
#define Set(a, b) memset(a, b, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define fir first
#define sec second
#define pb(a) push_back(a)
#define mp(a, b) make_pair(a, b)
#define ALL(a) (a).begin(), (a).end()
#define SZ(a) ((int)(a).size())
#define INF (0x3f3f3f3f)
#define INF1 (2139062143)
#define Mod (1000000007)
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define y1 wozenmezhemecaia

template <typename T> inline bool chkmax(T &a, T b) { return a < b ? a = b, 1 : 0; }
template <typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; }

inline int read()
{
    register int _, __; register char c_;
    for (_ = 0, __ = 1, c_ = getchar(); c_ < '0' || c_ > '9'; c_ = getchar()) if (c_ == '-') __ = -1;
    for ( ; c_ >= '0' && c_ <= '9'; c_ = getchar()) _ = (_ << 1) + (_ << 3) + (c_ ^ 48);
    return _ * __;
}

inline void File()
{
#ifdef hany01
    freopen("bzoj3295.in", "r", stdin);
    freopen("bzoj3295.out", "w", stdout);
#endif
}

const int maxn = 100005;

struct Data { int x, y, z, Ans, id; }A[maxn];
inline bool cmp1(const Data &A, const Data &B)
{
    if (A.x != B.x) return A.x < B.x;
    if (A.y != B.y) return A.y < B.y;
    return A.z < B.z;
}

inline bool cmp2(const Data &A, const Data &B)
{
    if (A.y != B.y) return A.y < B.y;
    return A.z < B.z;
}

int n, m, del[maxn], pos[maxn];
LL Ans[maxn];

struct BIT
{
    int c[maxn];
#define lb(x) ((x) & -(x))
    inline void update(int x, int dt) { for ( ; x <= n; x += lb(x)) c[x] += dt; }
    inline int query(int x) { int Ans = 0; for ( ; x; x -= lb(x)) Ans += c[x]; return Ans; }
}bit;

inline void CDQ(int l, int r)
{
    if (l == r) return ;
    int mid = (l + r) >> 1;
    CDQ(l, mid), CDQ(mid + 1, r);
    sort(A + l, A + mid + 1, cmp2), sort(A + mid + 1, A + r + 1, cmp2);
    int x = l, y = mid + 1;
    while (y <= r) {
        while (x <= mid && A[x].y < A[y].y) bit.update(A[x].z, 1), ++ x;
        A[y].Ans += bit.query(A[y].z - 1), ++ y;
    }
    For(i, l, x - 1) bit.update(A[i].z, -1);
}

int main()
{
    File();

    n = read(), m = read();
    For(i, 1, n)
        A[i].z = n - read() + 1, A[i].x = i, A[i].id = i, pos[n - A[i].z + 1] = i;
    For(i, 1, m) A[pos[del[i] = read()]].y = n - i + 1;
    static int cntt = 0;
    For(i, 1, n) if (!A[i].y) A[i].y = ++ cntt;

    CDQ(1, n);

    For(i, 1, n) A[i].x = n - A[i].x + 1, A[i].z = n - A[i].z + 1;
    sort(A + 1, A + 1 + n, cmp1);
    CDQ(1, n);

    For(i, 1, n) pos[A[i].z] = i;
    For(i, 1, n) if (A[i].y <= n - m) Ans[m + 1] += A[i].Ans;
    Fordown(i, m, 1) Ans[i] = Ans[i + 1] + A[pos[del[i]]].Ans;
    For(i, 1, m) printf("%lld\n", Ans[i]);

    return 0;

}
//去年花里逢君别,今日花开已一年。
//    -- 韦应物《寄李儋元锡》
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值