Description
国家有一个大工程,要给一个非常大的交通网络里建一些新的通道。
我们这个国家位置非常特殊,可以看成是一个单位边权的树,城市位于顶点上。
在 2 个国家 a,b 之间建一条新通道需要的代价为树上 a,b 的最短路径。
现在国家有很多个计划,每个计划都是这样,我们选中了 k 个点,然后在它们两两之间 新建 C(k,2)条 新通道。
现在对于每个计划,我们想知道:
1. 这些新通道的代价和
2. 这些新通道中代价最小的是多少
3. 这些新通道中代价最大的是多少
Solution
对于每次询问建出虚树,对于三个任务:
1. 考虑每条边的贡献,代价和为
∑u∑v∈u′schildredsizev×(n−sizev)distu,v
∑
u
∑
v
∈
u
′
s
c
h
i
l
d
r
e
d
s
i
z
e
v
×
(
n
−
s
i
z
e
v
)
d
i
s
t
u
,
v
2、3. 对于代价的最值,直接在路径端点的LCA处统计即可。
这个题必须吐槽一下,样例怎么tm全都只有两个点。。搞得我min、max输出反了还调了好久。。。
Code
/************************************************
* Au: Hany01
* Date: Apr 2nd, 2018
* Prob: [BZOJ3611][HEOI2014] 大工程
* Email: hany01@foxmail.com
************************************************/
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
#define File(a) freopen(a".in", "r", stdin), freopen(a".out", "w", stdout)
#define rep(i, j) for (register int i = 0, i##_end_ = (j); i < i##_end_; ++ i)
#define For(i, j, k) for (register int i = (j), i##_end_ = (k); i <= i##_end_; ++ i)
#define Fordown(i, j, k) for (register int i = (j), i##_end_ = (k); i >= i##_end_; -- i)
#define Set(a, b) memset(a, b, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define x first
#define y second
#define pb(a) push_back(a)
#define mp(a, b) make_pair(a, b)
#define ALL(a) (a).begin(), (a).end()
#define SZ(a) ((int)(a).size())
#define INF (0x3f3f3f3f)
#define INF1 (2139062143)
#define Mod (1000000007)
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define y1 wozenmezhemecaia
template <typename T> inline bool chkmax(T &a, T b) { return a < b ? a = b, 1 : 0; }
template <typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; }
inline int read()
{
register int _, __; register char c_;
for (_ = 0, __ = 1, c_ = getchar(); c_ < '0' || c_ > '9'; c_ = getchar()) if (c_ == '-') __ = -1;
for ( ; c_ >= '0' && c_ <= '9'; c_ = getchar()) _ = (_ << 1) + (_ << 3) + (c_ ^ 48);
return _ * __;
}
const int maxn = 1000005;
int n, e, e_, v[maxn << 1], nex[maxn << 1], beg[maxn], v_[maxn << 1], nex_[maxn << 1], beg_[maxn], dfn[maxn], fa[maxn][21], dpmin[maxn], dpmax[maxn], Min, Max, dep[maxn], sz[maxn], iskey[maxn], tim, tot, cnt;
LL Sum;
inline void add(int uu, int vv) { v[++ e] = vv, nex[e] = beg[uu], beg[uu] = e; }
inline void add_(int uu, int vv) {
if (uu == vv) return;
v_[++ e_] = vv, nex_[e_] = beg_[uu], beg_[uu] = e_;
}
inline bool cmp(const int& a, const int& b) { return dfn[a] < dfn[b]; }
void DFS(int u, int pa)
{
dfn[u] = ++ tim, fa[u][0] = pa, dep[u] = dep[pa] + 1;
for (register int i = beg[u]; i; i = nex[i])
if (v[i] != pa) DFS(v[i], u);
}
inline int LCA(int u, int v)
{
int dt = dep[u] - dep[v];
if (dt < 0) swap(u, v), dt = -dt;
Fordown(i, 20, 0) if (dt >= (1 << i))
dt -= (1 << i), u = fa[u][i];
if (u == v) return u;
Fordown(i, 20, 0) if (fa[u][i] != fa[v][i])
u = fa[u][i], v = fa[v][i];
return fa[u][0];
}
void DP(int u)
{
sz[u] = iskey[u];
dpmax[u] = iskey[u] ? 0 : -INF, dpmin[u] = iskey[u] ? 0 : INF;
for (register int i = beg_[u]; i; i = nex_[i])
{
DP(v_[i]), sz[u] += sz[v_[i]];
register int dis = dep[v_[i]] - dep[u];
Sum += (LL)sz[v_[i]] * (LL)(cnt - sz[v_[i]]) * (LL)dis;
chkmax(Max, dpmax[u] + dpmax[v_[i]] + dis), chkmin(Min, dpmin[u] + dpmin[v_[i]] + dis);
chkmax(dpmax[u], dpmax[v_[i]] + dis), chkmin(dpmin[u], dpmin[v_[i]] + dis);
sz[v_[i]] = 0;
}
beg_[u] = 0, iskey[u] = 0;
}
int main()
{
#ifdef hany01
File("bzoj3611");
#endif
static int uu, vv, stk[maxn], s[maxn];
n = read();
For(i, 2, n)
uu = read(), vv = read(), add(uu, vv), add(vv, uu);
DFS(1, 0);
for (int j = 1; (1 << j) <= n; ++ j)
For(i, 1, n) fa[i][j] = fa[fa[i][j - 1]][j - 1];
for (static int q = read(); q --; )
{
cnt = tot = read();
int top;
For(i, 1, tot) iskey[s[i] = read()] = 1;
if (!iskey[1]) s[++ tot] = 1;
sort(s + 1, s + 1 + tot, cmp);
stk[top = 1] = 1, e_ = 0;
for (register int i = 2; i <= tot; ++ i)
{
register int u = s[i], lca = LCA(u, stk[top]);
if (lca != stk[top])
{
while (top > 1 && dep[stk[top - 1]] >= dep[lca])
add_(stk[top - 1], stk[top]), -- top;
if (stk[top] != lca) add_(lca, stk[top]), stk[top] = lca;
}
stk[++ top] = u;
}
Fordown(i, top, 2) add_(stk[i - 1], stk[i]);
Max = -INF, Min = INF, Sum = 0ll;
DP(1);
sz[1] = 0;
printf("%lld %d %d\n", Sum, Min, Max);
}
return 0;
}
//少无适俗韵,性本爱丘山。
// -- 陶渊明《归园田居·其一》