【LOJ2183】【BZOJ3992】【SDOI2015】序列统计(DP,原根,NTT)

83 篇文章 0 订阅
40 篇文章 0 订阅

Description

https://loj.ac/problem/2183


Solution

我是来复习NTT板子的。。

容易得到一个暴力DP方法,设 fi,j f i , j 表示到第 i i 位,当前余数为j的方案数。
将其像快速幂一样转移可以将 n n 优化成logn

考虑怎么继续优化:
我们发现 f[l][k]=i×jk(modm)f[l1][j]×f[l1][k] f [ l ] [ k ] = ∑ i × j ≡ k ( mod m ) f [ l − 1 ] [ j ] × f [ l − 1 ] [ k ]
如果是 i+j i + j 我们就可以用NTT来优化了,我们可以将 i×j i × j 用原根转化一下:
由于 m m 是质数,所以我们可以找到m的原根 g0 g 0 ,由原根的定义可以知道 g00,g10gm20modm g 0 0 , g 0 1 … g 0 m − 2 mod m 不遗漏、不重复地组成了 1m1 1 … m − 1 这些数,我们用 g0 g 0 的次幂表示给定的集合内的数,就可以将乘法转化成加法,然后NTT即可。


Code

/**************************************
 * Au: Hany01
 * Prob: [BZOJ3992][SDOI2015] 序列统计
 * Date: Jul 26th, 2018
 * Email: hany01@foxmail.com
**************************************/

#include<bits/stdc++.h>

using namespace std;

typedef long long LL;
typedef pair<int, int> PII;
typedef vector<int> VI;
#define File(a) freopen(a".in", "r", stdin), freopen(a".out", "w", stdout)
#define rep(i, j) for (register int i = 0, i##_end_ = j; i < i##_end_; ++ i)
#define For(i, j ,k) for (register int i = (j), i##_end_ = (k); i <= i##_end_; ++ i)
#define Fordown(i, j, k) for (register int i = (j), i##_end_ = (k); i >= i##_end_; -- i)
#define Set(a, b) memset(a, b, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define SZ(a) ((int)(a.size()))
#define ALL(a) a.begin(), a.end()
#define pb(a) push_back(a)
#define mp(a, b) make_pair(a, b)
#define x first
#define y second
#define INF (0x3f3f3f3f)
#define INF1 (2139062143)
#define MOD (1004535809)
#define g (3)
#define y1 wozenmezhemecaia 
#ifdef hany01
#define debug(...) fprintf(stderr, __VA_ARGS__)
#else
#define debug(...)
#endif

template<typename T> inline bool chkmax(T &a, T b) { return a < b ? a = b, 1 : 0; }
template<typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; }

inline int read() {
    register char c_; register int _, __;
    for (_ = 0, __ = 1, c_ = getchar(); !isdigit(c_); c_ = getchar()) if (c_ == '-')  __ = -1;
    for ( ; isdigit(c_); c_ = getchar()) _ = (_ << 1) + (_ << 3) + (c_ ^ 48);
    return _ * __;
}

const int maxn = 8005;

int n, M, N, rev[maxn << 2], re[maxn];
LL I[maxn << 2], A[maxn << 2], powg[maxn << 2], ipowg[maxn << 2], invn, g0, ig;

inline LL Pow(LL a, LL b, LL mod = MOD) {
    static LL Ans;
    for (Ans = 1; b; b >>= 1, (a *= a) %= mod) if (b & 1) (Ans *= a) %= mod;
    return Ans;
}

inline int getg0(int x)
{
    static int t = x - 1, tot, pr[60], mk;
    for (register int i = 2; i * i <= t; ++ i) if (!(t % i)) {
        pr[++ tot] = i;
        do t /= i; while (!(t % i));
    }
    if (t > 1) pr[++ tot] = t;
    for (register int g0 = 2; ; ++ g0) {
        mk = 1;
        For(i, 1, tot) if (Pow(g0, (x - 1) / pr[i], x) == 1) { mk = 0; break; }
        if (mk) return g0;
    }
}

inline int ad(int x, int y) { if ((x += y) >= MOD) return x - MOD; return x; }

inline void NTT(LL* a, int ty) {
    rep(i, n) if (i < rev[i]) swap(a[i], a[rev[i]]);
    for (register int i = 2, p = 1; i <= n; p = i, i <<= 1) {
        register LL w0 = ty ? powg[i] : ipowg[i];
        for (register int j = 0; j < n; j += i) {
            register LL w = 1;
            rep(k, p) {
                register LL x = a[j + k], y = a[j + p + k] * w % MOD;
                a[j + k] = ad(x, y), a[j + p + k] = ad(x, MOD - y);
                (w *= w0) %= MOD;
            }
        }
    }
    if (!ty) rep(i, n) (a[i] *= invn) %= MOD;
}

inline void mult(LL* a, LL* b, LL* c) {
    static LL A[maxn << 2], B[maxn << 2];
    Set(A, 0), Set(B, 0);
    rep(i, M - 1) A[i] = a[i], B[i] = b[i];
    NTT(A, 1), NTT(B, 1);
    rep(i, n) (A[i] *= B[i]) %= MOD;
    NTT(A, 0);
    rep(i, M - 1) c[i] = ad(A[i], A[i + M - 1]);
}

int main()
{
#ifdef hany01
    File("bzoj3992");
#endif

    static LL t;
    static int anspos, hst, cnt, S, tmp;

    S = read(), M = read(), anspos = read(), N = read(), t = 1, g0 = getg0(M);
    rep(i, M - 1) re[t] = i, (t *= g0) %= M;

    For(i, 1, N) if (tmp = read()) I[re[tmp]] = 1;
    for (A[0] = 1, hst = (M - 2) << 1, cnt = 0, n = 1; n <= hst; n <<= 1, ++ cnt);
    rep(i, n) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (cnt - 1));
    ig = Pow(g, MOD - 2), invn = Pow(n, MOD - 2);
    for (register int i = 1; i <= n; i <<= 1) powg[i] = Pow(g, (MOD - 1) / i), ipowg[i] = Pow(ig, (MOD - 1) / i);

    for ( ; S; S >>= 1, mult(I, I, I)) if (S & 1) mult(A, I, A);
    cout << A[re[anspos]] << endl;

    return 0;
}
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值