Description
A城市有一个巨大的圆形广场,为了绿化环境和净化空气,市政府决定沿圆形广场外圈种一圈树。园林部门得到指令后,初步规划出n个种树的位置,顺时针编号1到n。并且每个位置都有一个美观度Ai,如果在这里种树就可以得到这Ai的美观度。但由于A城市土壤肥力欠佳,两棵树决不能种在相邻的位置(i号位置和i+1号位置叫相邻位置。值得注意的是1号和n号也算相邻位置!)。最终市政府给园林部门提供了m棵树苗并要求全部种上,请你帮忙设计种树方案使得美观度总和最大。如果无法将m棵树苗全部种上,给出无解信息。
Solution
套路题。
我们先建一个双向链表,每次贪心地选择一个最大的,将改点权值变成 valpre+valnext−valnow v a l p r e + v a l n e x t − v a l n o w ,删掉其前驱、后继。重复这个过程,用堆维护即可。
Code
/************************************************
* Au: Hany01
* Date: Aug 8th, 2018
* Prob: BZOj2151
* Email: hany01@foxmail.com
* Inst: Yali High School
************************************************/
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef long double LD;
typedef pair<int, int> PII;
#define rep(i, j) for (register int i = 0, i##_end_ = (j); i < i##_end_; ++ i)
#define For(i, j, k) for (register int i = (j), i##_end_ = (k); i <= i##_end_; ++ i)
#define Fordown(i, j, k) for (register int i = (j), i##_end_ = (k); i >= i##_end_; -- i)
#define Set(a, b) memset(a, b, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define x first
#define y second
#define pb(a) push_back(a)
#define mp(a, b) make_pair(a, b)
#define SZ(a) ((int)(a).size())
#define INF (0x3f3f3f3f)
#define INF1 (2139062143)
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define y1 wozenmezhemecaia
template <typename T> inline bool chkmax(T &a, T b) { return a < b ? a = b, 1 : 0; }
template <typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; }
inline int read() {
static int _, __; static char c_;
for (_ = 0, __ = 1, c_ = getchar(); c_ < '0' || c_ > '9'; c_ = getchar()) if (c_ == '-') __ = -1;
for ( ; c_ >= '0' && c_ <= '9'; c_ = getchar()) _ = (_ << 1) + (_ << 3) + (c_ ^ 48);
return _ * __;
}
const int maxn = 2e5 + 5;
int n, m, a[maxn], pre[maxn], nxt[maxn], tot, Ans, mk[maxn];
struct Item {
int id;
inline bool operator < (const Item& rhs) const { return a[id] < a[rhs.id]; }
}q[maxn];
int main()
{
#ifdef hany01
freopen("bzoj2151.in", "r", stdin);
freopen("bzoj2151.out", "w", stdout);
#endif
n = read(), m = read();
if (n / 2 < m) { puts("Error!"); return 0; }
For(i, 1, n) a[i] = read(), q[++ tot] = Item{i}, nxt[i] = i % n + 1, pre[i] = (i + n - 2) % n + 1;
make_heap(q + 1, q + 1 + tot);
while (m --) {
register int t = q[1].id; pop_heap(q + 1, q + 1 + tot);
Ans += a[t];
mk[pre[t]] = mk[nxt[t]] = 1, a[t] = a[pre[t]] + a[nxt[t]] - a[t];
nxt[pre[pre[t]]] = t, pre[nxt[nxt[t]]] = t;
pre[t] = pre[pre[t]], nxt[t] = nxt[nxt[t]];
q[tot] = Item{t}, push_heap(q + 1, q + 1 + tot);
while (mk[q[1].id]) pop_heap(q + 1, q + 1 + (tot --));
}
printf("%d\n", Ans);
return 0;
}