hdu4714 Tree2cycle 树形DP

题目是问把一棵树通过剪边、加边形成一个环的最小代价。

分成两步,先把树剪成一些链,再把链连接成一个环。

My Code:

//dp[u][0]表示u节点是所在链的端点时,以u节点为根节点的子树形成的最少的切边数。
//dp[u][1]表示u节点是所在链的中间的点时,以u节点为根节点的子树形成的最少的切边数。
#pragma comment(linker,"/STACK:102400000,102400000")
#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
#include <algorithm>
using namespace std;
#define maxn 1000100
#define INF 1000100
vector<int> G[maxn];
int dp[maxn][2];
int root;
void dfs(int u, int fa)
{
    int len = G[u].size();
    int sum=0,cld=0;
    for(int i = 0; i < len; i++)
    {
        int v=G[u][i];
        if(v==fa)continue;
        cld++;
        dfs(v,u);
    }
    int min1,min2;
    vector<int> hehe;          //存的是dp[v][0]-dp[v][1]
    for(int i = 0; i < len; i++)
    {
        int v=G[u][i];
        if(v==fa)continue;
        int tmp=min(dp[v][1],dp[v][0]+1); //当v节点的[1]值不存在时,需要v的[0]状态切掉与u相连
        sum+=tmp;                        //的那条边,所以+1
        hehe.push_back(dp[v][0]-tmp);
    }
    sort(hehe.begin(), hehe.end());
    if(cld==0){dp[u][0]=0;dp[u][1]=INF;return;}
    if(cld==1){dp[u][0]=sum+hehe[0];dp[u][1]=INF;return;} //此时dp[u][0]=dp[v][0];
    min1=hehe[0];min2=hehe[1];
    dp[u][0]=sum+min1;       //选一个儿子与u相连,,其他断开
    dp[u][1]=sum+min1+min2+1; //选两个儿子与u相连,其他断开,不过要断开u节点的祖先,所以+1
}
int main()
{
    int T;scanf("%d",&T);
    while(T--)
    {
        int n;scanf("%d",&n);
        for(int i = 0; i <= n; i++)G[i].clear();
        for(int i = 0; i <= n; i++)dp[i][0]=dp[i][1]=0;
        for(int i = 1; i < n; i++)
        {
            int a,b;scanf("%d%d",&a,&b);
            G[a].push_back(b);
            G[b].push_back(a);
        }
        root=1;
        dfs(root, -1);
        printf("%d\n",2*min(dp[root][0],dp[root][1]-1)+1);
    }

    return 0;
}



©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页