题目描述:
小明先把硬币摆成了一个 n 行 m 列的矩阵。
随后,小明对每一个硬币分别进行一次 Q 操作。
对第x行第y列的硬币进行 Q 操作的定义:将所有第 ix 行,第 jy 列的硬币进行翻转。
其中i和j为任意使操作可行的正整数,行号和列号都是从1开始。
当小明对所有硬币都进行了一次 Q 操作后,他发现了一个奇迹——所有硬币均为正面朝上。
小明想知道最开始有多少枚硬币是反面朝上的。于是,他向他的好朋友小M寻求帮助。
聪明的小M告诉小明,只需要对所有硬币再进行一次Q操作,即可恢复到最开始的状态。然而小明很懒,不愿意照做。于是小明希望你给出他更好的方法。帮他计算出答案。
【数据格式】
输入数据包含一行,两个正整数 n m,含义见题目描述。
输出一个正整数,表示最开始有多少枚硬币是反面朝上的。
【样例输入】
2 3
【样例输出】
1
代码实现
import java.math.BigInteger;
import java.util.Arrays;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
String m = scanner.next(), n = scanner.next();
BigInteger result_1 = bigSqrt(m);
BigInteger result_2 = bigSqrt(n);
System.out.println(result_1.multiply(result_2));
}
public static BigInteger bigSqrt(String str) {
int sLen = str.length(), len = (sLen + 1) / 2;
BigInteger srcBig = new BigInteger(str);
char[] chars = new char[len];
Arrays.fill(chars, '0');
for (int i = 0; i < len; i++) {
for (char j = '1'; j <= '9'; j++) {
chars[i] = j;
BigInteger testBig = new BigInteger(String.valueOf(chars));
if ((testBig.multiply(testBig)).compareTo(srcBig) > 0) {
chars[i]--;
break;
}
}
}
return new BigInteger(String.valueOf(chars));
}
}
题解
思路
如(8,9)此坐标的翻转次数为x坐标与y坐标的因数个数之积, 观察因数个数的求法可以发现只有完全平方数的因数个数才为奇数, 例如 2 * 2 = 4, 两个只有一个是有效个数
所以要求为反面硬币的个数 硬币必须翻转奇数次, 只有x, y 坐标都为完全平方数才能翻转奇数次,
所以只需要找出1 到 m 和 1 到 n 各有几个完全平方数即可
可以简单发现1到m的完全平方数个数为sqrt(m) 向下取整
所以用排列组合可以得到最终答案为sqrt(m) * sqrt(n) //注意是向下取整哦
实现细节
题目中对于m和n数据规模的描述
【数据规模】
对于10%的数据,n、m <= 10^3;
对于20%的数据,n、m <= 10^7;
对于40%的数据,n、m <= 10^15;
对于10%的数据,n、m <= 10^1000(10的1000次方)。
10 ^ 1000 数值太大, long long 都没法存 只能用BigInteger
问题有顺延到了如何用BigInteger sqrt(m)
如果用累加的方法去试太费时间, 不过因为我们知道sqrt(m)的大致长度所以可以用1~9去遍历每一位去试
好了 大致就解决了 具体实现看上述代码