
姿态估计
文章平均质量分 91
AI浩
2022年博客之星Top8,2021年博客之星Top6,博客专家,华为云云享专家,十佳博主,阿里云专家博主,拥有多项发明专利并参与过国家重大专项,拥有丰富的开发经验。注重理论与实践的结合,让AI学起来不再枯燥。如果大家在看文章的时候,发现了文章的错误,烦请指出,我会及时纠正。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
MediaPipe模型解读 | MoveNet-SinglePose:自底向上做单人姿态估计
说起业务落地级别的姿态估计算法方案,大家基本上的共识都是top-down范式,也就是det+pose的形式,先由一个轻量级的姿态估计模型提供bbox,再依次送入pose模型进行单人姿态估计,利用一些工程上的优化能抵消掉det模型的开销,基本上做到一整套流程的平均推理延迟约等于单个姿态估计模型推理的延迟。而MoveNet则比较与众不同,它是一个bottom-up的模型,这种范式一般用在多人姿态估计中,而更特别的是,MoveNet是一个bottom-up的单人姿态估计模型。转载 2022-10-02 11:12:07 · 2068 阅读 · 0 评论 -
AI进阶实战营——骨骼点动作识别
第一天第一步:创建Notebook模型任务**step1:**进入BML主页,点击立即使用🔗:https://ai.baidu.com/bml/**step2:**点击Notebook,创建“通用任务”**step3:**填写任务信息。注意这里的信息要填写您所在的企业信息,即归属要选择公司,并输入您自身所在的公司全称。如果您还在上学,请输入学校全称。既不是企业员工也不是学生,归属才能选择个人。第二步:下载数据集下载链接:https://aistudio.baidu.com/aistud原创 2022-02-24 13:53:57 · 2906 阅读 · 0 评论