文章目录
摘要
现有的微光图像增强技术不仅难以兼顾视觉质量和计算效率,而且在未知的复杂场景中通常无效。在本文中,我们开发了一种新的自校准照明(SCI)学习框架,用于在现实世界的低光场景中快速、灵活和鲁棒的增光图像。具体来说,我们建立了一个权重共享的级联照明学习过程来处理这个任务。考虑到级联模式的计算负担,我们构造了自校正模块,实现了各阶段结果之间的收敛,产生了仅使用单个基本块进行推理的增益(这在以往的工作中尚未得到利用),大大降低了计算成本。然后定义无监督训练损失,提高模型适应一般场景的能力。进一步,我们进行了全面的探索,挖掘了SCI的内在属性(现有工作中所缺乏的),包括操作不敏感的适应性(在不同简单操作的设置下获得稳定的性能)和模型无关的一般性(可应用于基于照明的现有工作,以提高性能)。大量的实验和烧蚀研究充分证明了我们在质量和效率上的优势。在微光人脸检测和夜间语义分割等方面的应用充分揭示了SCI的潜在实用价值。。源代码可在以下网站获得
https://github.com/vis-opt-group/SCI。
1. 简介
微光图像增强旨在使隐藏在黑暗中的信息可见,从而提高图像质量ÿ