【第50篇】迈向快速、灵活、稳健的微光图像增强

本文提出了一种新的自校准照明(SCI)学习框架,用于微光图像增强。通过权重共享的级联照明学习和自校准模块,实现在未知复杂场景中快速、灵活和稳健的图像增光。SCI框架通过无监督训练损失提高模型适应性,并展示在黑暗人脸检测和夜间语义分割等任务中的实用价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

现有的微光图像增强技术不仅难以兼顾视觉质量和计算效率,而且在未知的复杂场景中通常无效。在本文中,我们开发了一种新的自校准照明(SCI)学习框架,用于在现实世界的低光场景中快速、灵活和鲁棒的增光图像。具体来说,我们建立了一个权重共享的级联照明学习过程来处理这个任务。考虑到级联模式的计算负担,我们构造了自校正模块,实现了各阶段结果之间的收敛,产生了仅使用单个基本块进行推理的增益(这在以往的工作中尚未得到利用),大大降低了计算成本。然后定义无监督训练损失,提高模型适应一般场景的能力。进一步,我们进行了全面的探索,挖掘了SCI的内在属性(现有工作中所缺乏的),包括操作不敏感的适应性(在不同简单操作的设置下获得稳定的性能)和模型无关的一般性(可应用于基于照明的现有工作,以提高性能)。大量的实验和烧蚀研究充分证明了我们在质量和效率上的优势。在微光人脸检测和夜间语义分割等方面的应用充分揭示了SCI的潜在实用价值。。源代码可在以下网站获得
https://github.com/vis-opt-group/SCI。

1. 简介

在这里插入图片描述

微光图像增强旨在使隐藏在黑暗中的信息可见,从而提高图像质量ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI浩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值