摘要
人工智能术语翻译第四部分,包括M、N、O、P开头的词汇!

M
英文术语 | 中文翻译 | 常用缩写 | 备注 |
---|
Machine Learning Model | 机器学习模型 | | |
Machine Learning | 机器学习 | ML | 机器学习 |
Machine Translation | 机器翻译 | MT | |
Macro Average | 宏平均 | | |
Macro-F1 | 宏F1 | | |
Macro-P | 宏查准率 | | |
Macron-R | 宏查全率 | | |
Mahalanobis Distance | 马哈拉诺比斯距离 | | |
Main Diagonal | 主对角线 | | |
Majority Voting | 绝对多数投票 | | |
Majority Voting Rule | 多数表决规则 | | |
Manhattan Distance | 曼哈顿距离 | | |
Manifold | 流形 | | |
Manifold Assumption | 流形假设 | | |
Manifold Learning | 流形学习 | | |
Manifold Tangent Classifier | 流形正切分类器 | | |
Margin | 间隔 | | 统计 |
Margin Theory | 间隔理论 | | |
Marginal Distribution | 边缘分布 | | |
Marginal Independence | 边缘独立性 | | |
Marginal Likelihood | 边缘似然函数 | | |
Marginal Probability Distribution | 边缘概率分布 | | |
Marginalization | 边缘化 | | |
Markov Blanket | 马尔可夫毯 | | |
Markov Chain | 马尔可夫链 | | |
Markov Chain Monte Carlo | 马尔可夫链蒙特卡罗 | MCMC | |
Markov Decision Process | 马尔可夫决策过程 | MDP | |
Markov Network | 马尔可夫网络 | | |
Markov Process | 马尔可夫过程 | | |
Markov Property | 马尔可夫性质 | | |
Markov Random Field | 马尔可夫随机场 | MRF | |
Mask | 掩码 | | |
Mask Language Modeling | 掩码语言模型化 | | |
Masked Self-Attention | 掩蔽自注意力 | | |
Mathematical Optimization | 数学优化 | | |
Matrix | 矩阵 | | |
Matrix Calculus | 矩阵微积分 | | |
Matrix Completion | 矩阵补全 | | |
Matrix Decomposition | 矩阵分解 | | |
Matrix Inversion | 逆矩阵 | | |
Matrix Product | 矩阵乘积 | | |
Max Norm | 最大范数 | | |
Max Pooling | 最大汇聚 | | |
Maxima | 极大值 | | |
Maximal Clique | 最大团 | | |
Maximization | 极大 | | |
Maximization Step | M步 | | |
Maximization-Maximization Algorithm | 极大-极大算法 | | |
Maximum A Posteriori | 最大后验 | | |
Maximum A Posteriori Estimation | 最大后验估计 | MAP | |
Maximum Entropy Model | 最大熵模型 | | |
Maximum Likelihood | 极大似然 | | |
Maximum Likelihood Estimation | 极大似然估计 | MLE | |
Maximum Likelihood Method | 极大似然法 | | |
Maximum Margin | 最大间隔 | | |
Maximum Mean Discrepancy | 最大平均偏差 | | |
Maximum Posterior Probability Estimation | 最大后验概率估计 | MAP | |
Maximum Weighted Spanning Tree | 最大带权生成树 | | |
Maxout | Maxout | | |
Maxout Unit | Maxout单元 | | |
Mean | 均值 | | |
Mean Absolute Error | 平均绝对误差 | | |
Mean And Covariance RBM | 均值和协方差RBM | | |
Mean Filed | 平均场 | | |
Mean Filter | 均值滤波 | | |
Mean Pooling | 平均汇聚 | | |
Mean Product of Student t-Distribution | 学生 t 分布均值乘积 | | |
Mean Squared Error | 均方误差 | | |
Mean-Covariance Restricted Boltzmann Machine | 均值-协方差受限玻尔兹曼机 | | |
Mean-Field | 平均场 | | |
Meanfield | 均匀场 | | |
Measure Theory | 测度论 | | |
Measure Zero | 零测度 | | |
Median | 中位数 | | |
Memory | 记忆 | | |
Memory Augmented Neural Network | 记忆增强神经网络 | MANN | |
Memory Capacity | 记忆容量 | | |
Memory Cell | 记忆元 | | |
Memory Network | 记忆网络 | MN | |
Memory Segment | 记忆片段 | | |
Mercer Kernel | Mercer 核 | | |
Message | 消息 | | |
Message Passing | 消息传递 | | |
Message Passing Neural Network | 消息传递神经网络 | MPNN | |
Meta-Learner | 元学习器 | | |
Meta-Learning | 元学习 | | |
Meta-Optimization | 元优化 | | |
Meta-Rule | 元规则 | | |
Metric | 指标 | | |
Metric Learning | 度量学习 | | |
Micro Average | 微平均 | | |
Micro-F1 | 微F1 | | |
Micro-P | 微査准率 | | |
Micro-R | 微查全率 | | |
Min-Max Normalization | 最小最大值规范化 | | |
Mini-Batch Gradient | 小批量梯度 | | |
Mini-Batch Gradient Descent | 小批量梯度下降法 | | |
Mini-Batch SGD | 小批次随机梯度下降 | | |
Minibatch | 小批量 | | |
Minibatch Stochastic | 小批量随机 | | |
Minima | 极小值 | | |
Minimal Description Length | 最小描述长度 | MDL | |
Minimax Game | 极小极大博弈 | | |
Minimum | 极小点 | | |
Minkowski Distance | 闵可夫斯基距离 | | |
Misclassification Cost | 误分类代价 | | |
Mixing | 混合 | | |
Mixing Time | 混合时间 | | |
Mixture Density Network | 混合密度网络 | | |
Mixture Distribution | 混合分布 | | |
Mixture of Experts | 混合专家模型 | | |
Mixture-of-Gaussian | 高斯混合 | | |
Modality | 模态 | | |
Mode | 峰值 | | |
Model | 模型 | | |
Model Averaging | 模型平均 | | |
Model Collapse | 模型坍塌 | | |
Model Complexity | 模型复杂度 | | |
Model Compression | 模型压缩 | | |
Model Identifiability | 模型可辨识性 | | |
Model Parallelism | 模型并行 | | |
Model Parameter | 模型参数 | | |
Model Predictive Control | 模型预测控制 | MPC | |
Model Selection | 模型选择 | | |
Model-Agnostic Meta-Learning | 模型无关的元学习 | MAML | |
Model-Based Learning | 有模型学习 | | |
Model-Based Reinforcement Learning | 基于模型的强化学习 | | |
Model-Free Learning | 免模型学习 | | |
Model-Free Reinforcement Learning | 模型无关的强化学习 | | |
Moment | 矩 | | |
Moment Matching | 矩匹配 | | |
Momentum | 动量 | | |
Momentum Method | 动量法 | | |
Monte Carlo | 蒙特卡罗 | | |
Monte Carlo Estimate | 蒙特卡罗估计 | | |
Monte Carlo Integration | 蒙特卡罗积分 | | |
Monte Carlo Method | 蒙特卡罗方法 | | |
Moore’s Law | 摩尔定律 | | |
Moore-Penrose Pseudoinverse | Moore-Penrose 伪逆 | | |
Moral Graph | 端正图/道德图 | | |
Moralization | 道德化 | | |
Most General Unifier | 最一般合一置换 | | |
Moving Average | 移动平均 | MA | |
Multi-Armed Bandit Problem | 多臂赌博机问题 | | |
Multi-Class Classification | 多分类 | | |
Multi-Classifier System | 多分类器系统 | | |
Multi-Document Summarization | 多文档摘要 | | |
Multi-Head Attention | 多头注意力 | | |
Multi-Head Self-Attention | 多头自注意力 | | |
Multi-Hop | 多跳 | | |
Multi-Kernel Learning | 多核学习 | | |
Multi-Label Classification | 多标签分类 | | |
Multi-Label Learning | 多标记学习 | | |
Multi-Layer Feedforward Neural Networks | 多层前馈神经网络 | | |
Multi-Layer Perceptron | 多层感知机 | MLP | |
Multi-Nominal Logistic Regression Model | 多项对数几率回归模型 | | |
Multi-Prediction Deep Boltzmann Machine | 多预测深度玻尔兹曼机 | | |
Multi-Response Linear Regression | 多响应线性回归 | MLR | |
Multi-View Learning | 多视图学习 | | |
Multicollinearity | 多重共线性 | | |
Multimodal | 多峰值 | | |
Multimodal Learning | 多模态学习 | | |
Multinomial Distribution | 多项分布 | | |
Multinoulli Distribution | Multinoulli分布 | | |
Multinoulli Output Distribution | Multinoulli输出分布 | | |
Multiple Dimensional Scaling | 多维缩放 | | |
Multiple Linear Regression | 多元线性回归 | MLR | 统计 |
Multitask Learning | 多任务学习 | | |
Multivariate Decision Tree | 多变量决策树 | | |
Multivariate Gaussian Distribution | 多元高斯分布 | | |
Multivariate Normal Distribution | 多元正态分布 | | |
Mutual Information | 互信息 | | |
Machine-Readable Data | 机器可读的数据 | | |
Mae | 平均绝对误差 | MAE | |
Mahalanobis Distances | 马氏距离 | | 统计 |
Matrices | 矩阵 | | 数学 |
Matthews Correlation Coefficient | 马修斯相关系数 | MCC | |
Maximum Likelihood Methods | 最大似然法 | | 统计 |
Maximum Likelihood Procedures | 最大似然估计法 | | 统计 |
MCTS Method | 蒙特卡洛树搜索方法 | | |
Mean-Squared Error | 均方误差 | | 统计、机器学习 |
Mechanical Sympathy | 机械同感,软硬件协同编程 | | |
Merging | 合并 | | |
Message Passing Neural Networks | 消息传递神经网络 | MPNNS | |
Microarray Data | 微阵列数据 | | |
Mini Batch | 小批次 | | |
Mining | 挖掘 | | |
Mining Out | 挖掘 | | |
Missing Values | 缺失值 | | 统计 |
ML Algorithm | 机器学习算法 | | |
ML Modelling | 机器学习建模 | | |
ML Potentials | 机器学习势能 | | |
ML-Driven | 机器学习驱动的 | | |
ML-Driven Optimization | 机器学习驱动的最优化 | | |
MLP Neural Model | 多层感知机神经模型 | | |
Model Construction | 模型构建 | | |
Model Evaluation | 模型评估 | | |
Model Performance | 模型性能 | | |
Model Statistics | 模型统计 | | |
Model Training | 模型训练 | | 机器学习 |
Model Validation | 模型验证 | | |
Model-Based Iterative Reconstruction | 基于模型的迭代重建 | MBIR | |
Model-Construction | 模型构建 | | |
Modelling Scenario | 建模场景 | | |
Molecular Graph Theory | 分子图论 | | |
Molecular Modelling | 分子建模 | | |
Monte Carlo Tree Search | 蒙特卡洛树搜索 | MCTS | 数学 |
Moore’S Law | 摩尔定律 | | 计算机 |
Multi-Agent Control System | 多智能体控制系统 | | |
Multi-Core Desktop Computer | 多核台式计算机 | | 计算机 |
Multi-Dimensional Big Data Analysis | 多维度大数据分析 | | |
Multi-Layer Feed-Forward | 多层前馈 | MLFF | |
Multi-Objective Genetic Algorithm | 多目标遗传算法 | MOGA | |
Multi-Objective Optimization | 多目标优化 | | 机器学习 |
Multi-Reaction Synthesis | 多反应合成 | | |
Multilayer Perceptron | 多层感知机 | | |
Multivariate Regression | 多变量回归 | | |
N
英文术语 | 中文翻译 | 常用缩写 | 备注 |
---|
N-Gram | N元 | | |
N-Gram Feature | N元特征 | | |
N-Gram Model | N元模型 | | |
Naive Bayes Algorithm | 朴素贝叶斯算法 | | |
Naive Bayes Classifier | 朴素贝叶斯分类器 | | |
Naive Bayes | 朴素贝叶斯 | NB | |
Named Entity Recognition | 命名实体识别 | | |
Narrow Convolution | 窄卷积 | | |
Nash Equilibrium | 纳什均衡 | | |
Nash Reversion | 纳什回归 | | |
Nats | 奈特 | | |
Natural Exponential Decay | 自然指数衰减 | | |
Natural Language Generation | 自然语言生成 | NLG | |
Natural Language Processing | 自然语言处理 | NLP | 机器学习 |
Nearest Neighbor | 最近邻 | | |
Nearest Neighbor Classifier | 最近邻分类器 | | |
Nearest Neighbor Graph | 最近邻图 | | |
Nearest Neighbor Regression | 最近邻回归 | | |
Nearest-Neighbor Search | 最近邻搜索 | | |
Negative Class | 负类 | | |
Negative Correlation | 负相关法 | | |
Negative Definite | 负定 | | |
Negative Log Likelihood | 负对数似然函数 | | |
Negative Part Function | 负部函数 | | |
Negative Phase | 负相 | | |
Negative Sample | 负例 | | |
Negative Sampling | 负采样 | | |
Negative Semidefinite | 半负定 | | |
Neighbourhood Component Analysis | 近邻成分分析 | NCA | |
Nesterov Accelerated Gradient | Nesterov加速梯度 | NAG | |
Nesterov Momentum | Nesterov动量法 | | |
Net Activation | 净活性值 | | |
Net Input | 净输入 | | |
Network | 网络 | | |
Network Capacity | 网络容量 | | |
Neural Architecture Search | 神经架构搜索 | NAS | |
Neural Auto-Regressive Density Estimator | 神经自回归密度估计器 | | |
Neural Auto-Regressive Network | 神经自回归网络 | | |
Neural Language Model | 神经语言模型 | | |
Neural Machine Translation | 神经机器翻译 | | |
Neural Model | 神经模型 | | |
Neural Network | 神经网络 | NN | |
Neural Turing Machine | 神经图灵机 | NTM | |
Neurodynamics | 神经动力学 | | |
Neuromorphic Computing | 神经形态计算 | | |
Neuron | 神经元 | | |
Newton Method | 牛顿法 | | |
No Free Lunch Theorem | 没有免费午餐定理 | NFL | |
Node | 结点 | | |
Noise | 噪声 | | |
Noise Distribution | 噪声分布 | | |
Noise-Contrastive Estimation | 噪声对比估计 | NCE | |
Nominal Attribute | 列名属性 | | |
Non-Autoregressive Process | 非自回归过程 | | |
Non-Convex Optimization | 非凸优化 | | |
Non-Informative Prior | 无信息先验 | | |
Non-Linear Model | 非线性模型 | | |
Non-Linear Oscillation | 非线性振荡 | | |
Non-Linear Support Vector Machine | 非线性支持向量机 | | |
Non-Metric Distance | 非度量距离 | | |
Non-Negative Matrix Factorization | 非负矩阵分解 | NMF | |
Non-Ordinal Attribute | 无序属性 | | |
Non-Parametric | 非参数 | | |
Non-Parametric Model | 非参数化模型 | | |
Non-Probabilistic Model | 非概率模型 | | |
Non-Saturating Game | 非饱和博弈 | | |
Non-Separable | 不可分 | | |
Nonconvex | 非凸 | | |
Nondistributed | 非分布式 | | |
Nondistributed Representation | 非分布式表示 | | |
Nonlinear Autoregressive With Exogenous Inputs Model | 有外部输入的非线性自回归模型 | NARX | |
Nonlinear Conjugate Gradients | 非线性共轭梯度 | | |
Nonlinear Independent Components Estimation | 非线性独立成分估计 | | |
Nonlinear Programming | 非线性规划 | | |
Nonparametric Density Estimation | 非参数密度估计 | | |
Norm | 范数 | | |
Norm-Preserving | 范数保持性 | | |
Normal Distribution | 正态分布 | | |
Normal Equation | 正规方程 | | |
Normalization | 规范化 | | 统计、机器学习 |
Normalization Factor | 规范化因子 | | |
Normalized | 规范化的 | | |
Normalized Initialization | 标准初始化 | | |
Nuclear Norm | 核范数 | | |
Null Space | 零空间 | | |
Number of Epochs | 轮数 | | |
Numerator Layout | 分子布局 | | |
Numeric Value | 数值 | | |
Numerical Attribute | 数值属性 | | |
Numerical Differentiation | 数值微分 | | |
Numerical Method | 数值方法 | | |
Numerical Optimization | 数值优化 | | |
N-Dimensional Space | N维空间 | | |
Naive Bayesian | 朴素贝叶斯 | | 统计 |
Naive Bayesian Methods | 朴素贝叶斯方法 | | 统计 |
Named Entity Recognition,NER | 命名实体识别 | NER | |
Nearest Neighbors | 近邻 | | |
Nearest Neighbour Model | 近邻模型 | | |
Negative Predictive Value | 阴性预测值 | NPV | |
Network Architecture | 网络结构 | | 机器学习 |
Network Geometry | 网络几何 | | |
Neural Turing Machines | 神经图灵机 | NTM | |
Neural-Network-Based Function | 基于神经网络的函数 | | |
Neurons | 神经元 | | 机器学习 |
Nuclear Magnetic Resonance | 核磁共振 | NMR | |
Noise Filters | 噪声过滤器 | | |
Noise-Free | 无噪的 | | |
Non-Linear | 非线性 | | 数学、统计 |
Non-Linear Correlation | 非线性相关 | | 统计 |
Non-Linearity | 非线性 | | |
Non-Parametric Algorithm | 非参数化学习算法 | | |
Non-Safety-Critical Applications | 非安全关键型应用 | | |
Non-Steady-State | 非稳态 | | |
Non-Stochastic | 非随机的 | | |
Non-Template | 非模板 | | |
Non-Template Methods | 非模板方法 | | |
Non-Zero Weight | 非零权重 | | |
O
英文术语 | 中文翻译 | 常用缩写 | 备注 |
---|
Object Detection | 目标检测 | | |
Object Recognition | 对象识别 | | |
Objective | 目标 | | |
Objective Function | 目标函数 | | |
Oblique Decision Tree | 斜决策树 | | |
Observable Variable | 观测变量 | | |
Observation Sequence | 观测序列 | | |
Occam’s Razor | 奥卡姆剃刀 | | 机器学习 |
Odds | 几率 | | |
Off-Policy | 异策略 | | |
Offline Inference | 离线推断 | | |
Offset | 偏移量 | | |
Offset Vector | 偏移向量 | | |
On-Policy | 同策略 | | |
One-Shot Learning | 单试学习 | | |
One-Dependent Estimator | 独依赖估计 | ODE | |
One-Hot | 独热 | | |
Online | 在线 | | |
Online Inference | 在线推断 | | |
Online Learning | 在线学习 | | |
Operation | 操作 | | |
Operator | 运算符 | | |
Optimal Capacity | 最佳容量 | | |
Optimization | 最优化 | | |
Optimization Landscape | 优化地形 | | |
Optimizer | 优化器 | | |
Ordered Rule | 带序规则 | | |
Ordinal Attribute | 有序属性 | | |
Origin | 原点 | | |
Orthogonal | 正交 | | 数学 |
Orthogonal Initialization | 正交初始化 | | |
Orthogonal Matrix | 正交矩阵 | | |
Orthonormal | 标准正交 | | |
Out-Of-Bag Estimate | 包外估计 | | |
Outer Product | 外积 | | |
Outlier | 异常点 | | |
Output | 输出 | | |
Output Gate | 输出门 | | |
Output Layer | 输出层 | | 机器学习 |
Output Smearing | 输出调制法 | | |
Output Space | 输出空间 | | |
Over-Parameterized | 过度参数化 | | |
Overcomplete | 过完备 | | |
Overestimation | 过估计 | | |
Overfitting | 过拟合 | | 机器学习 |
Overfitting Regime | 过拟合机制 | | |
Overflow | 上溢 | | |
Oversampling | 过采样 | | |
On-The-Fly Optimization | 运行中优化 | | 计算机 |
One-Hot Vector | 独热向量 | | 整个矢量中之后一个数为1 其余为0 |
Open-Source | 开源 | | 软件工程 |
Open-Source Dataset | 开源数据集 | | 机器学习 |
Out-Of-Distribution | 分布外,超出分布范围 | OOD | 指在机器学习或自然语言处理中,模型在测试数据中遇到了未曾在训练数据中出现过的数据,无法进行准确的预测或分类。 |
P
英文术语 | 中文翻译 | 常用缩写 | 备注 |
---|
PAC Learning | PAC学习 | | |
Pac-Learnable | PAC可学习 | | |
Padding | 填充 | | |
Paired t -Test | 成对 t 检验 | | |
Pairwise | 成对型 | | |
Pairwise Markov Property | 成对马尔可夫性 | | |
Parallel Distributed Processing | 分布式并行处理 | PDP | |
Parallel Tempering | 并行回火 | | |
Parameter | 参数 | | |
Parameter Estimation | 参数估计 | | |
Parameter Server | 参数服务器 | | |
Parameter Sharing | 参数共享 | | |
Parameter Space | 参数空间 | | |
Parameter Tuning | 调参 | | 机器学习 |
Parametric Case | 有参情况 | | |
Parametric Density Estimation | 参数密度估计 | | |
Parametric Model | 参数化模型 | | |
Parametric ReLU | 参数化修正线性单元/参数化整流线性单元 | PReLU | |
Parse Tree | 解析树 | | |
Part-Of-Speech Tagging | 词性标注 | | |
Partial Derivative | 偏导数 | | |
Partially Observable Markov Decision Processes | 部分可观测马尔可夫决策过程 | POMDP | |
Particle Swarm Optimization | 粒子群优化算法 | PSO | |
Partition | 划分 | | |
Partition Function | 配分函数 | | |
Path | 路径 | | |
Pattern | 模式 | | |
Pattern Recognition | 模式识别 | PR | |
Penalty Term | 罚项 | | |
Perceptron | 感知机 | | 机器学习 |
Performance Measure | 性能度量 | | |
Periodic | 周期的 | | |
Permutation Invariant | 置换不变性 | | |
Perplexity | 困惑度 | | |
Persistent Contrastive Divergence | 持续性对比散度 | | |
Phoneme | 音素 | | |
Phonetic | 语音 | | |
Pictorial Structure | 图形结构 | | |
Piecewise | 分段 | | |
Piecewise Constant Decay | 分段常数衰减 | | |
Pipeline | 流水线 | | |
Plate Notation | 板块表示 | | |
Plug And Play Generative Network | 即插即用生成网络 | | |
Plurality Voting | 相对多数投票 | | |
Point Estimator | 点估计 | | |
Pointer Network | 指针网络 | | |
Polarity Detection | 极性检测 | | |
Policy | 策略 | | |
Policy Evaluation | 策略评估 | | |
Policy Gradient | 策略梯度 | | |
Policy Improvement | 策略改进 | | |
Policy Iteration | 策略迭代 | | |
Policy Search | 策略搜索 | | |
Polynomial Basis Function | 多项式基函数 | | |
Polynomial Kernel Function | 多项式核函数 | | |
Polysemy | 一词多义性 | | |
Pool | 汇聚 | | |
Pooling | 汇聚 | | |
Pooling Function | 汇聚函数 | | |
Pooling Layer | 汇聚层 | | |
Poor Conditioning | 病态条件 | | |
Position Embedding | 位置嵌入 | | |
Positional Encoding | 位置编码 | | |
Positive Class | 正类 | | |
Positive Definite | 正定 | | |
Positive Definite Kernel Function | 正定核函数 | | |
Positive Definite Matrix | 正定矩阵 | | |
Positive Part Function | 正部函数 | | |
Positive Phase | 正相 | | |
Positive Recurrent | 正常返的 | | |
Positive Sample | 正例 | | |
Positive Semidefinite | 半正定 | | |
Positive-Semidefinite Matrix | 半正定矩阵 | | |
Post-Hoc Test | 后续检验 | | |
Post-Pruning | 后剪枝 | | |
Posterior Distribution | 后验分布 | | |
Posterior Inference | 后验推断 | | |
Posterior Probability | 后验概率 | | |
Potential Function | 势函数 | | |
Power Method | 幂法 | | |
PR Curve | P-R曲线 | | |
Pre-Trained Initialization | 预训练初始化 | | |
Pre-Training | 预训练 | | |
Precision | 查准率/准确率 | | 数学、HPC |
Precision Matrix | 精度矩阵 | | |
Predictive Sparse Decomposition | 预测稀疏分解 | | |
Prepruning | 预剪枝 | | |
Pretrained Language Model | 预训练语言模型 | | |
Primal Problem | 主问题 | | |
Primary Visual Cortex | 初级视觉皮层 | | |
Principal Component Analysis | 主成分分析 | PCA | |
Principle Of Multiple Explanations | 多释原则 | | |
Prior | 先验 | | |
Prior Knowledge | 先验知识 | | 统计 |
Prior Probability | 先验概率 | | |
Prior Probability Distribution | 先验概率分布 | | |
Prior Pseudo-Counts | 伪计数 | | |
Prior Shift | 先验偏移 | | |
Priority Rule | 优先级规则 | | |
Probabilistic Context-Free Grammar | 概率上下文无关文法 | | |
Probabilistic Density Estimation | 概率密度估计 | | |
Probabilistic Generative Model | 概率生成模型 | | |
Probabilistic Graphical Model | 概率图模型 | PGM | |
Probabilistic Latent Semantic Analysis | 概率潜在语义分析 | PLSA | |
Probabilistic Latent Semantic Indexing | 概率潜在语义索引 | PLSI | |
Probabilistic Model | 概率模型 | | |
Probabilistic PCA | 概率PCA | | |
Probabilistic Undirected Graphical Model | 概率无向图模型 | | |
Probability | 概率 | | |
Probability Density Function | 概率密度函数 | PDF | |
Probability Distribution | 概率分布 | | 统计 |
Probability Mass Function | 概率质量函数 | | |
Probability Model Estimation | 概率模型估计 | | |
Probably Approximately Correct | 概率近似正确 | PAC | |
Product of Expert | 专家之积 | | |
Product Rule | 乘法法则 | | |
Properly PAC Learnable | 恰PAC可学习 | | |
Proportional | 成比例 | | |
Proposal Distribution | 提议分布 | | |
Propositional Atom | 原子命题 | | |
Propositional Rule | 命题规则 | | |
Prototype-Based Clustering | 原型聚类 | | |
Proximal Gradient Descent | 近端梯度下降 | PGD | |
Pruning | 剪枝 | | |
Pseudo-Label | 伪标记 | | |
Pseudolikelihood | 伪似然 | | |
Predicted Label | 预测值 | | 机器学习 |
Prediction | 预测 | | 机器学习 |
Prediction Accuracy | 预测准确率 | | 机器学习 |
Predictor | 预测器/决策函数 | | 机器学习 |
Protein Folding | 蛋白折叠 | | 生物 |
Panoptic Quality | 全景质量 | | 进一步评估分割和识别环节的表现 |
Panoptic Segmentation | 全景分割 | | |