【Block总结】掩码窗口自注意力 (M-WSA)

在这里插入图片描述

摘要

论文链接:https://arxiv.org/pdf/2404.07846
论文标题:Transformer-Based Blind-Spot Network for Self-Supervised Image Denoising
Masked Window-Based Self-Attention (M-WSA) 是一种新颖的自注意力机制,旨在解决传统自注意力方法在处理图像时的局限性,特别是在图像去噪和恢复任务中。M-WSA 通过引入掩码机制,确保在计算注意力时遵循盲点要求,从而避免信息泄露。

设计原理

  1. 窗口自注意力:M-WSA 基于窗口自注意力(Window Self-Attention, WSA)的概念,将输入图像划分为多个不重叠的窗口。在每个窗口内,计算自注意力以捕捉局部特征。这种方法的计算复杂度相对较低,适合处理高分辨率图像。

  2. 掩码机制:为了满足盲点要求,M-WSA 在计算注意力时应用了掩码。具体而言,掩码限制了每个像素只能关注其窗口内的特定像素,从而避免了对盲点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI浩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值