【Block总结】DynamicFilter,动态滤波器降低计算复杂度,替换传统的MHSA|即插即用

论文信息

标题: FFT-based Dynamic Token Mixer for Vision

论文链接: https://arxiv.org/pdf/2303.03932

关键词: 深度学习、计算机视觉、对象检测、分割

GitHub链接: https://github.com/okojoalg/dfformer

在这里插入图片描述

创新点

本论文提出了一种新的标记混合器(token mixer),称为动态滤波器(Dynamic Filter),旨在解决多头自注意力(MHSA)模型在处理高分辨率图像时的计算复杂度问题。传统的MHSA模型在输入特征图中像素数量的平方上具有计算复杂度,导致处理速度缓慢。通过引入基于快速傅里叶变换(FFT)的动态滤波器,论文展示了在保持性能的同时显著降低计算复杂度的可能性。

方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI浩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值