【Block总结】高效多尺度注意力EMA,超越SE、CBAM、SA、CA等注意力|即插即用

论文信息

标题: Efficient Multi-Scale Attention Module with Cross-Spatial Learning

作者: Daliang Ouyang, Su He, Guozhong Zhang, Mingzhu Luo, Huaiyong Guo, Jian Zhan, Zhijie Huang

论文链接: https://arxiv.org/pdf/2305.13563v2

GitHub链接: https://github.com/YOLOonMe/EMA-attention-module
在这里插入图片描述

创新点

该论文提出了一种新颖的高效多尺度注意力模块(EMA),旨在通过跨空间学习来提升特征表示的效果,同时降低计算开销。EMA模块的设计重点在于:

  • 信息保留: 在每个通道上保留信息,确保特征的完整性。
  • 计算效率: 通过重塑部分通道为批处理维度,减少计算负担。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI浩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值